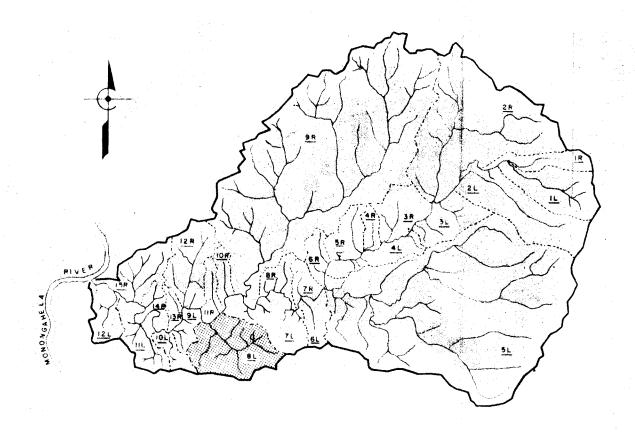
Sub-watershed 8L (Un-named)

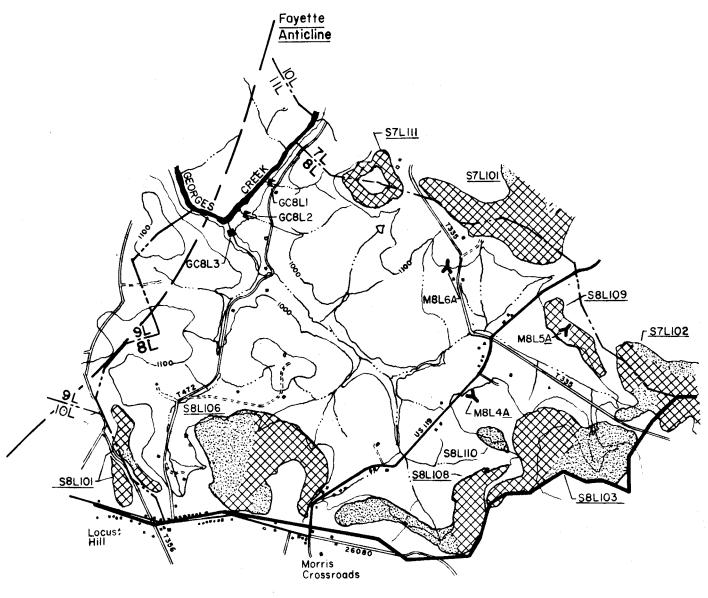
General Discussion

This sub-watershed encompasses 2.35 square miles or 1500.93 acres of land area, approximately 3.63% of the total study area. The basin is drained by 10.46 miles of tributaries (3.88% of the total length of all watershed tributaries) and contains 1 acre of lakes and ponds (0.07% of the total sub-watershed area). Commonwealth records show 7 surface mines and I deep mine. Our field investigations have pin-pointed 6 surface mines, 5 flowing, and 3 deep mines with 3 openings, 2 of which are flowing.

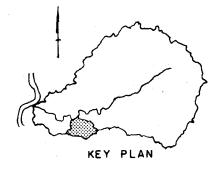

The following information gives the combined averages of the sampling stations designated as CC8L1, GC8L2, and GC8L3, all un-named. Their location is shown on Drawing 7316-7, while their individual averages are shown in Table 92. In the case where more than one tributary contributes to a sub-watershed, the values have been combined. The percentages of pollution load and flow that this subwatershed contributes to Monitoring Station GC8 on Georges Creek are also shown.

	Averages		Percent of Total Watershed
рН	6.3		
Net Hot Acidity	0	PPD	1.22%
Ferrous Iron	1	PPD	37.50%
Total Iron	183	PPD	6.58%
Sulfate	3,703	PPD	5.40%
Flow 3	,745,440	GPD	6.31%

TABLE 92
TRIBUTARY AVERAGE WATER QUALITY DATA
Sub-watershed


station	рĦ	Hot A	cid	Alkal	inity	Net Hot	Acid	Ferro	is Iron	Iron	as Fe	Sulf	ate	Fl	OW
	<u> </u>	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	GPN	G.P.D.
GC8L1	7.0	O	0	52.67	2.53	0	0	0	0	.65	.03	38.00	1.83	3	4,320
GC8L2	6.9	2.00	.76	76.67	2.03	0	0	.07	0	.41	.02	44.33	1.18	2	2,880
GC8L3	4.9	84.00	814.09	6.00	516.36	78.00	297.73	.06	.12	4.39	182.20	315.57	3699.11	2596	3,738,240
												en e	Andrew Comment of School and School School	* Land	
									•						
													And the second s		
ີ່ພ ນ ນ															
3															

Location Plan



LEGEND FOR THE FOLLOWING PLATES

- Y DEEP MINE OPENING (M9R59A)
- ▲ DEEP MINE PIPE (SAMPLE STATIONS MP5L2A, or BH9R2)
- WEIR (TRIBUTARY SAMPLE STATION GC7LI)
- CROSS-SECTION (TRIBUTARY SAMPLE STATION GC9RI)
- GEORGES CREEK CROSS-SECTION (SAMPLE STATION GC5)
- STRIP MINE (ABANDONED-UNRECLAIMED SILLIO2)
- STRIP MINE (ACTIVE SARIOT)
- STRIP MINE (ABANDONED-RECLAIMED STLIOG)
- **←** 60B P/LE (69R301)
- A,B,C UNDERLINED SUFFIX
 - INDICATES FLOWING DEEP MINE SAMPLE STATIONS MORTAA, B, C
- STLIOI UNDERLINE INDICATES FLOWING STRIP MINE, GOB PILE, OR BORE HOLE SAMPLE STATION

CHEAT RIVER WATERSHED

MAP OF SUB-WATERSHED 8L

(UN-NAMED) SCALE: 1"= 2000'

Deep Mines

The Commonwealth records indicate that there is 1 deep mine in this sub-watershed. Our field investigations located 3 deep mines with 3 openings, of which 2 are flowing. Table 93 lists the abandoned deep mines within the sub-watershed with the following information: mine number, name of mine or operator if known, strip mine connection, available mine maps, permit numbers, acres and seam mine mine opening designation, openings with flows, and estimated elevation of the openings.

Table 94 gives the averages of the abandoned deep mine flows. Directly under the averages are the percentages of flows and pollution loads that each complex contributes to the pollution load of the sub-watershed as measured at the following sampling stations: GC8L1, GC8L2, and GC8L3, all unnamed. When more than one major tributary drains a sub-watershed, the averages of each are combined. Similarly, when more than one deep mine opening of the same complex is flowing, the averages are also combined.

TABLE 93
ABANDONED DEEP MINES
Sub-Watershed
8L

Mine Number	Mame of Mine or Operator	Strip Mine Connection	Line Map Obtained	Area Mined (Acres)	Seam Mined	Opening No.	Elev. of Opening	Flow	Permit Number
M8L4	Unknown				PGH *	M8L4A	1120'	Yes	
M8L5	Harah Mine * Harah Coal & Coke	S8L109	WPA		PGH *	M8L5A	1130'	Yes	-
	Co.								
M8L6	Springfield Coke	*	WPA	-	PGH *	M8L6A	1100'	No	-

FABLE 94
ABANDONED DEEP HINE AVERAGE WATER QUALITY DATA
Sub-Watershed
8L

		a situation of the situation of	11/2 (1/4)											- €	
tation	Ha	Hot Ac	id	Alkalin	ity	Net Hot	Acid	Ferro	us Iron	Iron a	s Fe	Sulfa	te	Fl	O.M.
		PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	GPM	G.P.D.
8L4 %	2:3 -	3328.57 -	40.01	0	<u>.</u>	3328.57 -	40.01 13.61%	7.87 -	.09 75%	623.5 4	7.49 4.11%	3182.14 -	38.25 1.03%	2	2,880 .08%
31 5 %	2.3 -	4824.29 -	57.99 -	, o -	o -	4824.29 -	57.99 19.73%	434.90 -	5.23 4358%	1009 . 58 -	12.14 6.66%	4982.29 -	58.89 1.62%	1 -	1,440 .04%
-326-															

^{*} Assumed

Deep Mine M8L4

General Description:

This complex of the Pittsburgh seam is located about 75 feet southeast of Route 119 on the knoll of a hill which is 4,500 feet north of Morris Crossroads and 1,200 feet south of the intersection of T 335 and Route 119. Only one opening was found and it was flowing. It is situated in a wooded area and its location is shown on the map of Sub watershed 8L.

Recommendations:

The flowing opening requires a hydraulic seal to eliminate the discharge. By inundating the mine, the pollution-producing capability will be drastically reduced.

Costs:

Known 1 seal \$25,000

Strip Mines

The Commonwealth records indicate there are 7 strip mines in this sub-watershed. Our field investigations located 6 surface mines with 5 having flows. Table 95 lists the abandoned strip mines within the sub-watershed with the following information: the name of the mine or operator if known, permit numbers, the acres of area mined and which seam was mined, the designation we give the mine, whether or not there is a flow, and whether there are any deep mine connections.

The total acreage of abandoned surface mines in subwatershed 8L is 262.54 acres or 17.49% of the total subwatershed land area.

Table 96 gives the averages of the abandoned surface mine flows. Directly under the averages are the percentages of flows and pollution loads that each contributes to the pollution load of the sub-watershed as measured at the following sampling stations: GC8L1, GC8L2, and GC8L3.

Where a single surface mine has more than one flow, the averages of the flows are added together.

When more than one major tributary drains a sub-water shed, the averages of each are also combined.

Following Table 96 are the descriptions of the flowing strip mines along with abatement recommendations.

TABLE 95
Abandoned Surface Mines
Sub-watershed
8L

	Mine Number	Name of Mine or Operator	Permit No.	Area Mined (Acres)	Seam Mined	Flow- ing	Connection W/Deep Mine
	S8L101	Valentine & Tessone Coal Co.	16413	22.03	PGH	Yes	
	S8L103	Unknown		78.03	PGH*	Yes	
	\$8L106	Bridgeview Coal Co. Sabatine Coal Co.	15333 1664BSM2	95.47	PGH PGH	Yes	
September 1995 September 1995 Septem	S8L108	Harvey Gaskill J. R. Lancaster	17880 15836	45.90	RED SEW & RED	Yes	
	S8L109	Fry Coal & Stone Co. Smith & Wise	461M133 18732	17.44	SEW & RED RED	Yes	M8L5A
	S8L110	Unknown		3.67	PGH*	No	

TABLE 96
ABANDONED SURFACE MINE AVERAGE WATER QUALITY DATA
Sub-watershed
8L

Station	Hg	Hot Ac	id	j.l.k al	inity	Net Hot	Acid /	Ferro	us Iron	Iron s		Sulf	ate	Fl	OW
		PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	PPM	#/Day	GPM	G.P.D.
S8L101 %	2 . 8	16,341 -	2030 -	0	0	16,341	2030 690.64%	235 . 7	46.26 38,550%	3432 -	485.5 266.4%	14 , 919 -	1 5 65 42.27%	53 -	76,320 2.04%
S8L103 %	3.5 -	4 , 308	357 -	14 -	1.66	4,294	355.3 120.88%	137.2	5.93 4,942%	202 3 -	129.4 71.00%		374.6 10.12%	37 -	53,280 1.42%
S8L106 %	3,6 -	2 , 510 -	345.8 -	6 -	.22 -	2 , 504	345.6 117.58%	48.16	2 . 48 20 6 7%	96 . 11	18.73 10.28%		846.1 22.85%	45 -	64,800 1.73%
S8L108 %	2 . 8	1,225 -	48.08 -	0 -	0 -	1,225 -	48.08 16.36%	6.72	.17 141.67%	97 . 23	3.38 1.85%	2 , 050	75.80 2.05%	4	5,760 .15%
S8L109 %	2.7	1,110 -	13.34 -	0 -	0 -	1,110	13.34 4.54%	0 -	0 0%	178.3 -	2.14 1.17%		18.26 .49%	2	2,880 .08%
l _ω															
30 -															100.4

Strip Mine S8L10l

General Description:

This strip mine is split by T 356 just north of Locust Hill. It is 95% reclaimed through grading and 30% of the strip is vegetated naturally with trees and grasses. On the northern side of the eastern part of the strip a 25 foot highwall exists. Numerous spoil piles and depressions exist here. Four leaches were found, two on the southern side of the eastern portion and two on the southern side of the western portion. This 22.03 acre strip mined the Pittsburgh coal seam and is shown on the map of Sub-watershed 8L.

Recommendations:

An apparent mine fire exists here and until further investigations by others are made, no recommendations are given.

Strip Mine S8LI03

General Description:

This strip mine is located 2,000 feet southeast of the intersection between T 335 and U.S. Route 119. It lies on the south side of T 335. It is about 60% reclaimed through grading and revegetation, chiefly grasses. A long highwall, 50 to 75 feet high, remains on the abandoned portion. Four leaches originate on the northeastern edge of the strip. There are large depressions and spoil piles along the highwall. It is assumed that the Pittsburgh coal seam was recently mined here. The strip is shown on the map of Subwatershed 8L.

Recommendations:

This mine seems to be under permit by the Whyel Coal Company. Therefore, no recommendations are given at this time.

Strip Mine S8L106 (priority mine #419)

General Description:

This strip mine is located northeast Locust Hill and northwest of Morris Crossroads. It is approximately 1,500 northwest of the intersection of U.S. Route 119 and L.R. 26080. It is a large (95.47 acres), unreclaimed strip with six leaches. There is no visible highwall, but the area is covered with gob piles and depressions. Approximately 10% of the mine is vegetated. No deep mine connection has been established. Erosion is predominant over the entire area. Two of the leaches are on the eastern side, two on the southern side, and two on the western side. The strip, which is shown on the map of Subwatershed 8L, mined the Pittsburgh coal seam.

Recommendations:

The entire strip mine actually needs to be reclaimed. However, a minimum of 50% would probably eliminate or reduce the pollution. This would consist of flattening spoil piles, filling depressions, and revegetating and ditching.

Costs:

Grading	48 acres @ \$1,800/acre	\$ 86,400
Vegetation	49 acres @ \$600/acre	28,800
Ditches	4000 feet @ \$1/foot	4,000
		\$119,200

Strip Mine S8LI08 (Permit Number 17880 and 158036)

General Description:

This mine is located 1,000 feet northeast of Morris Crossroads and the intersection of L.R. 26080 and u.s. Route 119. The strip is 50% reclaimed through grading and revegetation. The natural and planted vegetation consisting of grasses and trees cover 85% of the area. The mine is 45.9 acres and has no deep mine connections. The existing highwall is 20 feet high and about 4,000 feet long. A leach originates from two small spoil piles and depressions along the highwall. The seams mined here were the Redstone and Sewickley. The strip is shown on the map of Sub-watershed 8L.

Recommendations:

The two smaller spoil piles should be graded to a good drainage slope and preferably toward the highwall to fill in the depressions. Then a diversion ditch at the base of the highwall would expedite the removal of water from the strip.

Costs:

Grading	10 acres @ \$1,800/acre	\$18,000
Vegetation	10 acres @ \$600/acre	6,000
Ditches	3,000 feet @ \$1/foot	3,000
		\$27,000

Strip Mine S8L109 (permit number 461M133 and 18732)

General Description:

This strip mine is located 1,500 feet directly east of the intersection between U.S. Route 119 and T 335. It contains 17.44 acres and exploited the Sewickley and Redstone coal seams. It is 95% reclaimed through grading and revegetation. The vegetation, produced by nature and man, covers the entire strip and consists of both grasses and trees. A 20 foot highwall is present as well as gob piles and a pond. A connection with deep mine M8L5 has been determined. The strip is shown on the map of Sub-watershed 8L.

Recommendations:

It is felt that M8L5 is contributing to the leachate from the strip. Therefore, further study at this site is required before any recommendations can be made.

Recommendations

Table 97 gives the recommendations for the polluting deep and strip mines, along with the costs associated with each recommendation. The order in which they are placed is determined by the cost per pound of acid removal.

An estimated effectiveness of 75% reduction of pollution load is assigned for each recommendation.

Table 98 lists the sources abated, the amount of benefication, and the costs associated with each plan.

The distance from Sampling Station GC8L3 to the next polluting tributary downstream, GC11L3, is 3.13 miles. This is the minimum distance on Georges Creek that would benefit from the recommended work.

TABLE 97 RECOMMENDED ABATEMENT PROCEDURES - COST BENEFICATION SUB - WATERSHED

\sim	~

		TOTAL	COSTS	COST \$/POUN	D ACID REMOVAL	Total Acid Abated	Total Iron Abated	% of t	TOTAL TERSHED
Rank	Mine No.	Known Sources	Potential Sources	Known Sources	Potential Sources	Ppd	Ppd	Acid	Iron
1	S8L106	\$119,200	\$119,200	\$ 459.88	\$ 459.88	259.2	14.05	_	8%
2	S8L108	27,000	27,000	748.75	748.75	36.06	2.53	-	1%
3	M8L4	25,000	25,000	833.33	833.33	30	5.62	-	3%
4	M8L5	See Harah Mine	, Table 75			43.49	9.11	-	5%
337-									

TABLE 98 BENEFICATION - RECOMMENDED PLANS SUB-WATERSHED

8L

			ACID		IRON		SULFATE	TOTAL CONS	T COSTS
Plan	Sources Abated	Ppd	% of Total Sub-Watershed	Ppd	% of Total Sub-Watershed	Ppd	% of Total Sub-Watershed	Known Sources	Potential Sources
A	3	325.26		22.2	12%	720.12	20%	\$171,200	\$171,200
В	2	295.26		16.58	9%	691.43	19%	146,200	146,200
C	1	259.2	1946 1947 1948	14.05	8%	634.58	17%	119,200	119,200
							ingeneral segment		
						1			