INDEX APPENDIX B | Table I | Laboratory Test Methods | .B-I | |---------|------------------------------|------| | Table 2 | Average Water Quality Data | .B-4 | | Chart I | pH - Net Acidity Correlation | .B-6 | | | | | WATER QUALITY DATA BY STATION WATER QUALITY CHARTS #### TABLE I #### HILLMAN STATE PARK #### MINE ACID DRAINAGE POLLUTION SURVEY OUTLINE OF LABORATORY TEST METHODS - I. pH Laboratory pH values were obtained using a temperature compensated Beckman Electric pH Meter. - 2. <u>Alkalinity</u> For samples having a pH of 4.5 or less, the alkalinity was was reported as zero. For samples having a pH greater than 4.5, a 50 ml sample was titrated with .02 normal sulfuric acid down to an end point of pH 4.5. After proper conversion, the results were expressed in mg/l of calcium carbonate. - 3. Acidity,- For samples having a pH of 4.5 or less, a 50 ml sample was boiled for two minutes. The sample was then titrated with .02 normal sodium hydroxide solution using a phenophthalien indicator to a permanent pink color and to an end point of pH 8.3. The results are expressed, after conversion, as mg/l of calcium carbonate. For samples of pH greater than 4.5, the same 50 ml sample utilized in the alkalinity determination was used to obtain acidity. As the conclusion of the alkalinity test, the 50 ml sample was boiled for two minutes, then titrated with .02 normal sodium hydroxide solution using a phenophthalien indicator to an end point of pH 8.3. The reported acidity value was then obtained by first applying the proper conversion units and then subtracting the previously determined alkalinity value. The subtraction serves to remove the "acidity" introduced into the virgin sample during the alkalinity test. - 4. <u>Iron</u> The total iron content was measured by using the 1,10 phenantroline method with a photoelectric colorimeter. The method is as follows: - a. Take a water sample by filling a clean 25 ml graduated cylinder to the 25 ml mark. Pour the sample into a clean colorimeter bottle. - b. Add the contents of the Ferro Ver Powder Pillow to the sample. Swirl the bottle to mix the sample. If iron is present, an orange color will develop. Let the sample stand for two minutes, but no longer than 10, before measuring the color. - c. Fill a clean colorimeter bottle with some demineralized water and place it in the light cell. Insert the Iron (Ferro Ver Method) Meter Scale in the meter and use the 4445 Color Filter. Adjust the light control for a reading of zero ppm. - d. Place the prepared sample in the light cell and read the ppm iron. - 5. <u>Sulfate</u> The barium sulfate turbidimetric method was used to measure the concentration of sulfate ions. A photoelectric colorimeter was used. The method is outlined as follows: - a. Take a sample by filling a clean 25 ml graduated cylinder to the 25 ml mark. Pour the sample into a clean colorimeter bottle. - b. Fill a colorimeter bottle with demineralized water and place in the light cell. Insert the Sulfate Meter Scale in the meter and use the 4445 Color Filter. Adjust the light control for a meter reading of zero ppm. - c. Add the contents of one Sulfa Ver Powder Pillow. Allow the powder to lay on the surfaces of the sample for 30 seconds, then - d. Place the prepared sample in the light cell and read the ppm Sulfate. - 6. <u>Aluminum</u> The determination of aluminum was made using the reagent called "aluminon" (aurintricarboxlic acid). A photoelectric colorimeter was used. The method is: - a. Take a water sample by filling a clean 50 ml graduated cylinder to the 50 ml mark. Pour the water sample into a clean 250 ml Erlenmeyer flask. - b. Add the contents of one Alu Ver Powder Pillow to the water sample. Swirl to dissolve the powder. A pink color will develop if aluminum is present. - c. Immediately divide the sample into two 25 ml portions by filling two clean colorimeter bottles. - d. Add to one of the colorimeter bottles the contents of one Bleaching Powder Pillow. Swirl the colorimeter bottle to dissolve the powder. Allow 30 minutes for color development. Insert the Aluminum Meter Scale in the meter and use the 445 color filter. Place the colorimeter bottle containing the sample plus bleaching powder in the light cell. Adjust the light control for a meter reading of zero ppm. - e. Place the colorimeter bottle of the prepared sample in the light cell. Read the ppm Aluminum. B-4 TABLE 2 HILLMAN STATE PARK # AVERAGE WATER QUALITY DATA | Lbs/Day
Net | 82.
804.
502.
36.
820.
347.
24.
66.
197.
1027.
36.
57.
66.
197.
1027.
47.
47.
47.
47.
47.
47.
47.
4 | | |---|---|--| | Avg. Acid Loads, Lbs/Day
Acid Alk. Net | 263
263
280
200
239
239
239
24
26
26
27
29
403
403
100
100
100
100
100
100
100
100
100
1 | | | Avg. Ac | 138
1067
8321
454
454
840
586
339
763
203
1056
372
157
575
2060 | | | Mg/l
Net | 102
124
124
124
148
148
149
165
165
165
165
17
190 | | | Avg. Acidity, Mg/l | 75
78
78
39
100
83
20
20
25
21
310
250
117
81
37
102
67 | | | Avg. A | 177
179
179
176
175
244
272
318
445
169
261
261
261
276
288
288
288
278
278
278
278
278
278
278 | | | Avg. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | Avg. Flow
GPM | 497
3940
191
200
200
104
200
38
156
17
91
72
108
111
524 | | | Туре | Gauging Gauging Gauging AMD Source (M) AMD Source Gauging AMD Source Gauging AMD Source | | | Station | -0w44r0v0-0-04w4r0v-480000 | | TABLE 2 CON'T. HILLMAN STATE PARK ## AVERAGE WATER QUALITY DATA | Lbs/Day | Ne+ | ! | (710) | (3) | !
!
! | 549 | 258 | !! | Q | 0.00
0.00 | (6) | (6) | 943 | (31) | 45 | 2070 | (09) | 434 | 2190 | 1 1 | 927 | 1416 | |-----------|----------|-------------|---------|------------|-------------|---------|-------------|-------|------------|--------------|------------|-------------|---------|---------|------------|---------|------------|---------|---------|---------|----------------|-------------| | id Loads, | Alk. Net | !!!! | 066 | 6 |
 | 35 | 1
1
1 | 1 1 | 12 | 130 | 91 | 233 | 837 | 627 | 38 | 280. | 573 | 1570 | 75 | 1 | 173 | 20 I | | Avg. Ac | Acid | ! | 280 | 9 | ! | 641 | 258 | 1 1 | <u>∞</u> | 222 | 7 | 224 | 1780 | 296 | 83 | 2350 | 513 | 2004 | 2265 | 1 | 0011 | 1617 | | _i | Net | 7.1 | (26) | (21) | (252) | 246 | 797 | (137) | 65 | 72 | (36) | (17) | 69 | (14) | 50 | 204 | (13) | 30 | 326 | [| 198 | 061 | | Acidity, | A
K | 133 | 128 | 92 | 252 | 59 | !!! | 142 | 901 | 61 | 82 | 130 | 70 | †ċ1 | 09 | 28 | 103 | 108 | = | 1 | 37 | 27 | | A.vg. A | Acid | 204 | 31 | 41 | 0 | 305 | 767 | Ŋ | 171 | <u>0</u> , | 56 | 13 | 139 | 180 | 011 | 232 | 90 | 138 | 337 | !! | 235 | 217 | | Avg. | Hd | 6,3 | 6.5 | 6.5 | 6.4 | 6.1 | 4.0 | 9.9 | 6.1 | 5.3 | 6.4 | 9.9 | 6.4 | 6.4 | 6.4 | 6.3 | 6.2 | 6.3 | 5.4 | !
1 | 6.2 | - 9 | | Avg. Flow | GPM | the see Mar | 753 | 12 | 1 1 1 | 175 | 78 | **** | Ō, | 26 | 01 | 165 | 1065 | 276 | 63 | 2100 | 475 | 1210 | 560 | 1 1 | 578 | 621 | | | Type | Pond | Gauqina | AMD Source | Pond | Gauging | AMD Source | Pond | AMD Source | AMD Source | AMD Source | A'ID Source | Gaudina | Gauding | AMD Source | Gauging | AMD Source | Gaudina | Gauging | Gaining | AMD Source (M) | Gauging | | | Station | 21 | 22 | 23 | 24 | 25 | 25X | 2.7 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 38 | 39 | 40 | 41 | 43 | 44 | (M) Indicates Major Source Net Values Shown in Parentheses Indicate Alkalinity STATION | | 600 | | | | | 0 4 7 | 0 | 0 6 | SAM | 170 | N G | | | | |----------------------|------|-------|-------|-------|-------|------|------|------|------|------|------|---|--------------------| | Quality
Parameter | 0//7 | 01/11 | 12/70 | 12/70 | 1//1 | 17/7 | 3/71 | 4/71 | 17/5 | 11/9 | 17/7 | | AVG. for
PERIOD | | FI OW (a.p.m.) | 03 | | | 00 | G | | - | 1 | 0,0 | 7 | 0 | | U | | | 000 | 00 | 8 | 90 | 26 | 00 | 071 | (2) | 40 | 2 | 78 1 | | 00 | | | | | | | | | | | | | | | | | Hd | 6.9 | 6.7 | 6.2 | 6.3 | 9.9 | 6.2 | 6.3 | 6.8 | 6.3 | 6.2 | 6.3 | | 6.4 | | CONC. (MG/L): | | | | | | | | | | | | | | | ACID | 2 | 228 | 410 | 228 | 124 | 296 | 911 | 168 | 72 | 234 | 70 | | 177 | | ALK. | 122 | 122 | 88 | 48 | 70 | 56 | 44 | 48 | 48 | 84 | 102 | | 75 | | IRON | .13 | 31. | 80* | .22 | 01. | • 05 | 01. | . 0 | .04 | 01. | .48 | ٠ | .13 | | SULFATE | 2000 | 1700 | 1725 | 1850 | 1825 | 1350 | 1575 | 1800 | 1800 | 3250 | 1575 | | 1860 | | ALUM. | .40 | .87 | .26 | 00.1 | .33 | . 40 | •26 | .53 | .04 | .05 | .07 | | .38 | | LOAD(Ibs/day) | | | | | | | | | | | | | | | ACID | | 164 | 296 | 246 | 134 | 213 | 167 | 151 | 35 | 84 | 32 | | 138 | | ALK | 88 | 88 | 63 | 52 | 9/ | 37 | 63 | 43 | 23 | 30 | 47 | | 56 | | IRON | | | | | | | | | | | | | 60. | | SULFATE | 1440 | 1224 | 1242 | 1998 | 1971 | 972 | 2250 | 1730 | 863 | 1160 | 719 | | 1420 | | ALUM | | | | | | | | | | | | | .34 | | | | | | | | | | | | | | | | COMMENTS: | | : | | ; | | 0 4 7 | E 0 | F | SAM | 7 7 d | 7. N G | | | |----------------------|------|-------|-------|------|-------|-------|------|-------|-------|--------|---|--------------------| | Quality
Parameter | 0/// | 11/70 | 12/70 | 1/71 | 17/7 | 3/71 | 4/71 | 17/5 | 12/9 | 17/7 | | AVG. for
PERIOD | | (m a a) WO !: | | | | | | | | | | | |
.07 | | Const. Const. | 400 | 360 | 420 | 379 | 435 | 1320 | 490 | 540 | 125 | 500 | _ | 497 | | | | | • | | | | | | | | | 70 | | Hd | 6.9 | 6.5 | 6.4 | 6.5 | 5.8 | 5,5 | 6.8 | 6.9 | 6.1 | 6.4 | | 6.4 | | CONC. (MG/L): | | | | | | | | | | | : | | | ACID | 8 | 152 | 228 | 380 | 224 | 298 | 290 | 72 | 92 | 46 | | 179 | | ALK. | 78 | 114 | 48 | 20 | 44 | _ | 50 | 38 | 62 | 94 | | 55 | | IRON | - | .12 | .22 | .17 | .05 | .70 | 0 | .02 | 01. | = | | 91 | | SULFATE | 2050 | 1700 | 2175 | 2125 | 1750 | 3750 | 1800 | 2250 | 3500 | 1575 | | 2267 | | ALUM. | .71 | 1.00 | 1.10 | 1.00 | .13 | 1.40 | 1.20 | .03 | 52 | .75 | | .78 | | _OAD(lbs/day) | | | | | | · | | | | • | | | | ACID | 38 | 657 | 1150 | 1730 | 1170 | 4725 | 1708 | 467 | 144 | 276 | | 1067 | | ALK | 377 | 492 | 242 | 91 | 230 | - | 294 | 246 | 92 | 564 | | 263 | | IRON | | | | | | | | | | | | .95 | | SULFATE | 9840 | 7344 | 10962 | 9664 | 9135 | 59400 | 8384 | 15580 | 5250 | 9450. | | 14500 | | ALUM | | | | | | | | | | · | | 4.85 | COMMENTS: | | | | | - | 0 4 7 1 | E O | Ų | SAM | 1 7 d | . N G | | | , | | | |----------------------|-------|-------|-------|----------------|---------|-------|-------|--------------|-------|--------|-------|--------|-------|-------|--------------------| | Quality
Parameter | 02/7 | 01/6 | 10/70 | 10/70 | 11/70 | 01/11 | 12/70 | 1//1 | 17/7 | 3/71 | 4/71 | 5/71 | 17/9 | 17/7 | AVG. for
PERIOD | | 1 0 0 1 10 13 | | | | | | | | | | | | | | | | | r LOw (g.p.m.) | 554 | 1320 | 1320 | 1600 | 7500 | 1440 | 11700 | 6870 | 3861 | 7414 | 2860 | 5250 | 1586 | 1948 | 3940 | | | | | | | | | | | | | | | | | | | Hd | 6.4 | 6.7 | 6.7 | 6.0 | 6.9 | 6.4 | 9.9 | 6.4 | 6.2 | 5.5 | 6.2 | 6.4 | 6.3 | 6.2 | 6.3 | | CONC. (MG/L): | | : | | | | | | | | | | | | | | | ACID | 434 | 80 | 184 | 174 | 0 | 448 | 0 | 260 | 99 | 340 | 198 | 120 | 12 | 40 | 176 | | ALK. | 92 | 28 | 120 | 72 | 62 | 86 | 38 | 99 | 80 | 99 | 100 | 108 | 44 | 140 | 78 | | IRON | .07 | 01 | .08 | .03 | 01. | 05 | .14 | .15 | .07 | 01. | 0 | | 0 | .05 | , 74 | | SULFATE | 2275 | 2750 | 3000 | 1875 | 350 | 1375 | 100 | 2000 | 1675 | 1600 | 1950 | 2000 | 3000 | 1675 | 1830 | | ALUM. | .04 | 0 | .03 | .08 | 01. | .14 | .14 | .22 | .07 | .20 | .28 | .05 | 0 | • 00 | 01. | | LOAD(lbs/day) | | | • | | | | | | | | | | | | | | ACID | 2885 | 1268 | 2938 | 3360 | 0 | 7750 | 15480 | 21410 | 090£ | 30220 | 6790 | 7560 | 228 | 935 | 8321 | | ALK | 610 | 360 | 1540 | 1380 | 5340 | 1490 | 5340 | 5440 | 3700 | 5860 | 3430 | 6800 | 840 | 4200 | 3300 | | IRON | | | | | | | | | | | | | | | .53 | | SULFATE | 15080 | 34280 | 38480 | 3 60 00 | 30170 | 23760 | 14040 | 164900 77600 | | 142200 | 66820 | 120000 | 56600 | 41150 | 61400 | | ALUM | | | | | | | | | | | | | | | 13.5 | | | | | | | | | | | | | | 2 | | | | COMMENTS: | | | | | | 0 4 7 | 5 |) F | SAM | 17 0 | <i>9</i> | | | | | | | |----------------------|-------|------|-------|-------------|--------------------|--------|-------|------|------|----------|------|------|------|--------|--------------------|------| | Quality
Parameter | 07/7 | 9/70 | 10/70 | 07/01 07/01 | 01/11 | 01/11 | 12/70 | 17/1 | 17/7 | 3/71 | 4/71 | 5/71 | 1//9 | 17/7 | AVG. for
PERIOD | 200 | | FLOW (g.p.m.) | 480 | 09 | 09 | 240 | 180 | 180 | 75 | 180 | 270 | 480 | 150 | 240 | 32 | 52 | 51 | 161 | На | 6.4 | 6.4 | 9.9 | 5.6 | 5.8 | 9.9 | 6.3 | 6.3 | 6.0 | 5.2 | 5.1 | 5.9 | 4.4 | 4.2 | 5 | 5.8 | | CONC. (MG/L): | | | | | | | | | | | | | | ٠ | | | | ACID | 284 | 170 | 108 | 204 | 92 | 388 | 392 | 234 | 144 | 122 | 340 | 132 | 99 | 96 | - | 88 | | ALK. | 34 | 34 | 40 | 68 | 36 | 52 | 48 | 54 | 62 | 91 | 72 | 30 | ı | 1 | | 39 | | IRON | .33 | .53 | 1.10 | .04 | 60. | .03 | 1 | .27 | 0 | .15 | .37 | .04 | 0. | 3.80 | • | 49 | | SULFATE | 3250 | 4000 | 3125 | 1050 | 1450 | . 2000 | 2000 | 2000 | 2000 | 1950 | 3000 | 2125 | 2750 | 3250 | 22 | 2280 | | ALUM. | 00.1 | .38 | .70 | .05 | 50. | 90. | 90° | .07 | .07 | .13 | :02 | .02 | ŀ | .15 | • | 20 | | LOAD(lbs/dcy) | | | | | Party and a second | | | | | | | | | | | | | ACID | 1636 | 122 | 78 | 588 | 1661 | 839 | 353 | 505 | 467 | 703 | 612 | 380 | 25 | 09 | 4 | 454 | | ALK | 961 | 25 | 29 | 196 | 78 | 112 | 43 | 117 | 201 | 92 | 129 | 86 | ı | ı | J. | 93 | | IRON | | | | | | — | | | | | | | | | • | .55 | | SULFATE | 18720 | 2880 | 2251 | 3024 | 3132 | 4320 | 1800 | 4320 | 6480 | 11220 | 5400 | 5120 | 2130 | . 2028 | 5202 | 02 | | ALUM | | | | | | | | | | | | | | | | 69 | COMMENTS: STATION 4A | | - | | | 7 | 7 4 0 | E O | • • | SAN | 1 7 0 | <i>9</i> | | , | | |-------------------------------|-------|-------|-------|-------|-------|------|-------|------|-------|----------|-------|---|-----------------| | Water
Quality
Parameter | 0//01 | 01/11 | 11/70 | 12/70 | 1/71 | 1/2 | 3/71 | 1/7 | 17/5 | 12/9 | 12/7 | | AVG. for PERIOD | | FLOW (g.p.m.) | 09 | 120 | 09 | 40 | 120 | 06 | 215 | 801 | 75 | 30 | 112 | | 93 | | | | | | | | | | | | | | | | | ЬН | 4.8 | 4.4 | 4.7 | 4.2 | 4.1 | 4.0 | 4.2 | 4.5 | 3.6 | 3.7 | 4.2 | | 4.2 | | CONC. (MG/L): | | | | | | | | | | | | | | | ACID | 538 | 540 | 858 | 1000 | 1118 | 1098 | 812 | 1040 | 770 | 194 | 312 | | 753 | | ALK. | 12 | 1 | 2 | l | 54 | 1 | 1 | 1 | 1 | 1 | 100 | | 7 | | IRON | 2.6 | 2.9 | 3.2 | 1.8 | 3.3 | 6.4 | 3.0 | 2.8 | 3.0 | 2.8 | - | | 2.9 | | SULFATE | 1325 | 3000 | 3500 | 3500 | 5000 | 4250 | 4500 | 4750 | 3750 | 3250 | 1675 | | 3500 | | ALUM. | L.1 | 9.1 | 8. | | 4.5 | 2.5 | 5.1 | 14.8 | 15.0 | 15.0 | - | | 5.2 | | LOAD(ibs/day) | | | | | | | | | • | | | | | | ACID | 387 | 778 | 618 | 480 | 1610 | 1186 | 2095 | 1347 | 693 | 69 | 419. | | 840 | | ALK | 8.6 | - | 1.4 | 1 | 77.8 | 1 | - | 1 | - | ı | 134.4 | | 20 | | IRON | | | | | | | | | | | | | 3.9 | | SULFATE | 954 | 4320 | 2520 | 1680 | 7200 | 4590 | 11600 | 6150 | 3370 | 1170 | 2250 | | 4160 | | ALUM | | | | | | | | | | | | | 5.2 | | | | | | | | | | | | | | | | COMMENTS: | 400 | - | | | - | DAT | E O | S 4 | ₹
7 | 1 7 0 | 9 N | | | | | |----------------------|-------|------|-------|-------|-------|------|------|--------|-------|------|------|------|---|--------------------| | Quality
Parameter | 07/7 | 9/70 | 10/70 | 07/01 | 12/70 | 1/71 | 17/2 | 3/71 | 4/71 | 5/71 | 12/9 | 1/7 | | AVG. for
PERIOD | | FLOW (g.p.m.) | 120 | 80 | 30 | 150 | 480 | 180 | 240 | 600 | 1.44 | 225 | 68 | 83 | | 200 | | | | | | | | | 1 | | | | 3 | | | | | Нф | 6.4 | 6.5 | 0.9 | 6.0 | 6.4 | 9.9 | 6.3 | 5.7 | 6.0 | 6.3 | 6.0 | 6.3 | | 6.1 | | CONC. (MG/L): | | | | | | | | | | | | | | | | ACID | 780* | 0 | 911 | 254 | 226 | 282 | 200 | 320 | 154 | 490 | 20 | 48 | | 244 | | ALK. | 96 | 96 | 114 | 88 | 174 | 74 | 118 | 09 | 89 | 76 | 72 | 180 | | 100 | | RON | 01. | .12 | .02 | 50. | .08 | .05 | 01. | .20 | 0 | 01. | 0 | .05 | · | .07 | | SULFATE | 2200 | 3000 | 3250 | 2050 | 1575 | 1675 | 1500 | 1500 | 2700 | 1625 | 2125 | 1575 | | 2061 | | ALUM. | .12 | 0 | .02 | .05 | .04 | •04 | .02 | .05 | 0 | .02 | 0 | 0 | | .03 | | LOAD(ibs/day) | | | | | | | | | | | | | | | | ACID | 1123* | 0 | 42 | 457 | 1302 | 508 | 576 | 2320 | 266 | 1323 | 16 | 48 | | 586 | | ALK | 138 | 92 | 41 | 158 | 1002 | 160 | 340 | 432 | 117 | 205 | 57 | 139 | | 239 | | IRON | | | , | • | | | | | | | | | | .62 | | SULFATE | 3168 | 2880 | 0111 | 3690 | 9072 | 3618 | 4320 | 10800 | 4665 | 4387 | 1770 | 1898 | | 3970 | | ALUM | | ٠ | | | | | | | | | | | | 01. | | | | | | | | | | | | | | | | | COMMENTS: ^{*} Excluded From Calculation Of Average Values STATION 6 | , o to | | | | | 0 4 7 | E O | S 40 | A | 1 7 d | <i>و</i>
× | | | , | | | | |----------------------|-------|------|-------|-------|-------|-------|-------|------|-------|---------------|------|------|------|------|-------------|--------------------| | Quality
Parameter | 7/70 | 9/70 | 07/01 | 10/70 | 11/70 | 11/70 | 12/70 | 1//1 | 17/2 | 3/71 | 4/71 | 17/5 | 17/9 | 17/7 | AVG.
PER | AVG. for
PERIOD | | FLOW (q.p.m.) | | - | i | | - | | - | | 3, 3 | | 1 | | | | | | | | 00 | 25 | 2 | ρρ | 1071 | 30 | 170 | 1501 | 740 | 7/0 1 | (2) | 170 | 40 | 75 | = | 104 | | | | | | | | | | | | | | | | | | • | | НФ | 6.5 | 6.4 | 0.9 | 6.8 | 6.3 | 6.3 | 6.1 | 9.9 | 6.2 | 5.8 | 5.9 | 6.7 | 5.9 | 6.3 | 9 | ٤. | | CONC. (MG/L): | | | | | | | | | | | | | | | | | | ACID | ¥©Z6 | 86 | 646 | 0 | 12 | 456. | 788 | 448 | 678 | 128 | 34. | 0 | ~ 96 | \$62 | 72 | 272 | | ALK. | 88 | 82 | 154 | 92 | 70 | 06 | 52 | 64 | 116 | 56 | 96 | 80 | 34 | 138 | | 83 | | IRON | .05 | • 08 | .07 | .05 | ,04 | .05 | .02 | 01. | 0 | 01. | 0 | 90. | 01. | 01. | | .05 | | SULFATE | 1225 | 3750 | 4000 | 2250 | 2000 | .1875 | 2500 | 2760 | 2250 | 3125 | 2350 | 2450 | 2125 | 2000 | 24 | 2479 | | ALUM. | 0 | .04 | 0 | .05 | .03 | 0 | 90. | .04 | 0 | 0 | 0 | 0 | 0 | 0 | - | <u>-</u> 0. | | LOAD(Ibs/day) | | | | | | | | | | | | | | | | | | ACID | ,ee2* | 31 | 233 | 0 | 17 | 492 | 1135 | 806 | 1953 | 415 | 31 | 0 | 46 | 101 | וא | 339 | | ALK | 63 | 30 | 55 | 99 | 101 | 97 | 75 | 115 | 334 | 181 | 50 | 115 | 16 | 98 | | 98 | | IRON | | | | | | | | | | | | | | | • | .05 | | SULFATE | 882 | 1350 | 1440 | 1620 | 2880 | 2025 | 3600 | 4968 | 6480 | 10130 | 2115 | 3530 | 1020 | 1248 | 30 | 3080 | | ALUM | | | | | | | | | | | | | | | | 0. | ### COM MENTS: ^{*}Excluded From Calculation Of Average Values. STATION 7 | Water | | | | - | 0 4 7 | E 0 | 0 F | SAM | 170 | 9 ~ | | , | | | |---------------|------|-------|-------|-------|-------|-------|-------|-------|------|------|------|---|---|--------------------| | Quality | 0/// | 07/01 | 11/70 | 12/70 | 17/1 | 17/2 | 3/71 | 4/71 | 1//5 | 1//9 | 17/7 | | | AVG. for
PERIOD | | FLOW (g.p.m.) | 30 | C C | 7.0 | 480 | 240 | 240 | 120 | 240 | 240 | Oa | 105 | | | 000 | | | | | | | 213 | 24.7 | 024 | 24.2 | 0.12 | | | | - | 202 | | Н | 5.5 | 6.7 | 6.7 | 6.0 | 5.9 | 5.7 | 6.0 | 6.0 | 5.0 | 5.7 | 6.2 | | | 5.9 | | CONC. (MG/L): | | | | | | | | | | | | | = | | | ACID | 0 | 560 | 100 | 880 | 208 | 768 | 182 | 306 | 64 | 84 | 344 | | | 318 | | ALK. | 68 | 001 | 72 | 48 | 44 |
52 | 14 | 8 | 42 | 70 | 80 | | | 55 | | RON | 41. | 40° | .03 | .03 | .20 | 0 | .20 | .25 | .03 | . 15 | 60° | | | - | | SULFATE | 3000 | 3500 | 2750 | 2000 | 3125 | .4000 | 3750 | 3500 | 3125 | 1875 | 2175 | | | 2980 | | ALUM. | .05 | .05 | 80. | 11. | .72 | .22 | 10. | .20 | .23 | .05 | .07 | | | .17 | | LOAD(Ibs/day) | | | | | | | | | | | | | | | | ACID | 0 | 238 | 09 | 5069 | 599 | 2212 | 917 | 881 | 184 | 18 | 433 | | | 763 | | ALK | 24 | 96 | 43 | 277 | 127 | 150 | 71 | 52 | 121 | 19 | 101 | | | 102 | | IRON | | | | | | | | | | | | | | 8 . | | SULFATE | 1080 | 3360 | 0591 | 11520 | 0006 | 11520 | 18900 | 10080 | 0006 | 1800 | 2690 | | | 7170 | | ALUM | | | | | | | | | | | | | | .36 | | | | | | | | | | | | | | | | | COMMENTS: | • | | | | 7 | 0 4 7 | E 0 | ٠ لر | A
A | 1 7 0 | D N J | : | | | |----------------------|-------|-------|-------|-------|-------|------|------|--------|-------|-------|------|------|--------------------| | Quality
Parameter | 07/01 | 10/70 | 11/70 | 11/70 | 12/70 | 17/1 | 2/71 | 3/71 | 1//4 | 5/71 | 12/9 | 17/7 | AVG. for
PERIOD | | FLOW (g.p.m.) | 12 | 01 | 30 | 45 | 80 | 09 | 36 | 80 | 24 | 42 | 13 | 22 | 38 | | | | | | | | | | | ` | | | | | | Ha | 6.2 | 6.1 | 4.5 | 5.3 | 4.7 | 5.1 | 5.2 | 5.0 | 5.2 | 4.1 | 4.2 | 4.9 | 5.0 | | CONC. (MG/L): | - | | | | | | | | | | | | | | ACID | 192 | 516 | 480 | 226 | 530 | 412 | 758 | 348 | 370 | 326 | 514 | 299 | 445 | | ALK. | 124 | 20 | 1 | 4 | 0 | 01 | 20 | 9 | 20 | ı | 1 | 9 | 20 | | IRON | . 44 | .24 | .25 | .22 | .12 | .30 | . 15 | .20 | .20 | .03 | 30 | 6 | .22 | | SULFATE | 3000 | 3125 | 2500 | 2200 | 1200 | 2500 | 2500 | 3125 | 2500 | 2500 | 850 | 1750 | 2300 | | ALUM. | .13 | .20 | 1.30 | 1.65 | .35 | 1.40 | 1.50 | 1.50 | .30 | 3.00 | 3.00 | 1.20 | 1.29 | | LOAD(lbs/doy) | | | | | | | | | | | | | • | | ACID | 28 | 62 | 149 | 122 | 509 | 297 | 327 | 334 | 107 | 164 | 67 | 175 | 203 | | ALK | 18 | _ | 1 | 8 | 10 | 7 | 6 | 15 | 9 | ı | 1 | 2 | 6.2 | | IRON | | | | | | | | | | 1 | | | 60. | | SULFATE | 432 | 375 | 1440 | 1188 | 1152 | 1800 | 1080 | 3010 | 720 | 1050 | 132 | 462 | 1062 | | ALUM | | | | | | | | | | | | | 65, | | | | | | | | | |] | | | | | | COMMENTS Station 9 Combines Former Stations 8 and 9 Starting 10/70. Previous Data Not Reported. | Woter | | | | | 0 A T | E O | ٦ | SAM | 170 | 9
N | | | · | | | |----------------------|------|------|-------|-------|-------|-------|-------|------|-------|--------|-------|-------|------|------|--------------------| | Quality
Parameter | 0/// | 9/70 | 0//01 | 10/70 | 01/11 | 11/70 | 12/70 | 1771 | 17/7 | 3/71 | 4/71 | 17/5 | 12/9 | 17/7 | AVG. for
PERIOD | | FLOW (g.p.m.) | 091 | 45 | 15 | 150 | 160 | 240 | 081 | 081 | 240 | 200 | 180 | 010 | 75 | 00 | 156 | | | 22 | 7 | 7 | 2 | 2 | 24.7 | 20- | 22 | 1014 | 222 | 3 | 217 | | 24 | | | Нд | 4.6 | 5.0 | 5.4 | 4.8 | 5.2 | 4.5 | 4.5 | 4.8 | 5.3 | 4.8 | 5.4 | 4.8 | 4.5 | 5.4 | 4.9 | | CONC. (MG/L): | | | | | | | | | | | | | | | - | | ACID | 518 | 386 | 380 | 322 | 390 | 1128 | 1200 | 608 | 456 | 570 | 512 | 212 | 482 | 746 | 564 | | ALK. | 2 | 01 | 40 | 9 | . 2 | 22 | - | 4 | 8 | 9 | 48 | 54 | 1 | 26 | 9 | | IRON | .26 | . 18 | 04. | .94 | 41. | 01.1 | .41 | 00.1 | .60 | .30 | .26 | | .22 | .24 | .45 | | SULFATE | 3500 | 4250 | 2000 | 1400 | 3000 | 3250 | 3250 | 3750 | 4375 | 3750 | 4000 | 3500 | 3750 | 2425 | 3505 | | ALUM. | 06* | .82 | 01. | .13 | .36 | .43 | 00.1 | 2.20 | 2.80 | 1.50 | 3.00 | 1.30 | 1.50 | 1.10 | 1.20 | | LOAD(Ibs/day) | | | | | | | | | | | | | | | | | ACID | 995 | 208 | 205 | 580 | 749 | 3249 | 2592 | 1313 | 1313 | 202 | 9011 | 534 | 434 | 179 | 1056 | | ALK | 3.8 | 5.4 | 21.6 | 10.8 | 3.8 | 63.4 | 1 | 8.6 | 23.0 | 21.6 | 103.0 | 136.0 | 1 | 6.2 | 29 | | IRON | | | | | | | · | | | | | | | | | | SULFATE | 6720 | 2295 | 2700 | 2520 | 5670 | 0926 | 7020 | 0906 | 12600 | 13500 | 8640 | 6830 | 3375 | 582 | 6490 | | ALUM | | | | | | | | | | | | | | | 2.56 | | | ! | | | | | | | | | | | | | | | COMMENTS: STATION II | | | | • | • | 0 4 7 | E O | U | S A N | 1 7 d | <i>⊗</i>
≥ | | | ŗ | | | | |----------------------|------|------|-------|-------|-------|--------|-------|-------|-------|---------------|------|------|------|---------|--------------|--------------------| | Quality
Parameter | 0//1 | 9/70 | 07/01 | 10/70 | 01/11 | 01/11 | 12/70 | 1//1 | 17/2 | 3/71 | 17/4 | 11/5 | 11/9 | 17/7 | | AVG. for
PERIOD | | FLOW (g.p.m.) | 9 | 30 | 3 | 15 | 12 | 20 | 09 | 30 | 30 | 30 | 01 | 30 | Dry | Trickle | | 17 | Н | 5.6 | 6.9 | 6.1 | 6.8 | 6.5 | 6.5 | 6.5 | 6.5 | 6.9 | 9.9 | 6.5 | 5.6 | | 6.5 | | 6.4 | | CONC. (MG/L): | | | ŀ | | | | | | | | | | | | | | | ACID | 212 | 150 | Q: | 0. | 440 | 811 | 358 | 4- | 320 | 0 | 82 | ° | , | 148 | | 143 | | ALK. | 132 | 1-14 | , 208 | 108 | 62 | 761 | 94 | 98 | 001 | 88 | 106 | 124 | 1 | 168 | - | 115 | | RON | .03 | .15 | .25 | .07 | .15 | .15 | 01. | .08 | 0 | £0° | .05 | 0 | | 86. | | . 17 | | SULFATE | 1450 | 3750 | 1500 | 1875 | 1325 | . 1025 | 1175 | 1225 | 1375 | 1425 | 1325 | 1500 | . 1 | 1125 | | 1430 | | ALUM | .03 | .02 | .04 | 10. | .03 | 90° | 10. | .07 | .02 | 0 | 10. | .02 | | .03 | | .02 | | LOAD(lbs/day) | | | | | | | | | | | | | | | | | | ACID | 15 | 54 | 0 | 0 | 63 | 28 | 258 | 5 | 115 | 0 | 01 | 0 | , | 01 | | 29 | | ALK | 6 | 41 | 7 | 61 | 13 | 46 | 89 | 35 | 36 | 32 | 13 | 45 | 1 | ı | | 26 | | IRON | | | | | | | | | | | | | | | | 1 | | SULFATE | 8 | 1350 | 54 | 338 | 061 | 246 | 846 | 441 | 495 | 513 | 160 | 540 | 1 | | | 378 | | ALUM | | | | | | | | | | | | | | | | 1 | COMMENTS: STATION 12 | Water | | | , | | 0 A T | E 0 | ¥ | SAM | 170 | N G | | | | | |----------------------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|----------|-----| | Quality
Parameter | 0//01 | 02/01 | 11/70 | 11/70 | 12/70 | 1//1 | 17/7 | 3/71 | 4/71 | 5/71 | 12/9 | 17/7 | AVG. for | ž O | | FLOW (g.p.m.) | 15 | 10 | 150 | 80 | 091 | 120 | 09 | 180 | 90 | 100 | 60 | 70 | 6 | | | | | | | | | | | | | | | | | | | Нф | 4.1 | 4.1 | 5.4 | 5.1 | 4.4 | 4.6 | 5.1 | 4.8 | 4.4 | 4.8 | 4.2 | 4.6 | 4.6 | ب ا | | CONC. (MG/L): | | | | | | | | | | | | | | [| | ACID | 1040 | 1206 | 290 | 636 | 850 | 2284* | 980 | 662 | 670 | 884 | 950 | 834 | 820 | 2 | | ALK. | 1 | _ | 12 | 14 | 1 | 2 | 20 | 8 | _ | 91 | _ | 2 | 6.2 | 2 | | RON | 3.30 | 3.20 | .78 | 2,10 | 95. | 2.80 | .27 | 09. | 00.1 | .17 | 2.00 | 1.80 | 1.50 | 00 | | SULFATE | 8875 | 1625 | 3500 | 4000 | 4750 | 4375 | 3750 | 4500 | 3750 | 3125 | 3500 | 2300 | 4000 | 8 | | ALUM. | 1.25 | 2.20 | 1.05 | 1.65 | 00.1 | 1.50 | 1.50 | 1.50 | 3.00 | 1.50 | 1.50 | 01: |
09.1 | 00 | | LOAD(lbs/day) | | | | | | | | | | | | | | | | ACID | 187 | 145 | 523 | 119 | 1632 | 3289* | 902 | 1430 | 723 | 1901 | 684 | 101 | 895 | 2 | | ALK | ı | ı | 21.0 | 13.4 | - | 2.9 | 14.4 | 17.3 | 1 | 19.2 | ı | 1.7 | 8.2 | 7 | | IRON | | | | | | | | | | | | | | 0. | | SULFATE | 1598 | 195 | 6300 | 3840 | 9120 | 6300 | 2700 | 9710 | 4044 | 3750 | 2520 | 1932 | 4380 | စ္က | | ALUM | | | | | | | | | | | | | - | .2 | ### COMMENTS: *Excluded From Calculation Of Average Values. STATION 12A | Water | | | | 7 | DAT | E 0 | ٠ لر | SAM | 1. 7 0 | 9 N | | | | | | | |----------------------|------|------|-------|----------|---------------|--------|-------|-------|--------|-------|-------|-------|-------|------|------|----------| | Quality
Parameter | 7/70 | 9/70 | 0//01 | 07/01 | 01/11 | 01/11 | 12/70 | 17/1 | 1/71 | 17/2 | 3/71 | 4/71 | 5/71 | 12/9 | 17/7 | AVG. for | | FLOW (g.p.m.) | 15 | 5. | 5 | 45 | 0 | 8 | 75 | 785 | 605 | - 7 | 560 | 234 | 672 | 69 | 183 | 432 | нd | 3.8 | 5.4 | 5.0 | 4.8 | 3.6 | 4.6 | 5.2 | 5.2 | 5.0 | 5.1 | 5.2 | 4.9 | 4.3 | 4.7 | 4.9 | 4.8 | | CONC.(MG/L): | | | | | | | | | | | | | | | | | | ACID | 1166 | 0 | 492 | 382 | 1326 | 1348 | 638 | 638 | 966 | 980 | 598 | 704 | 700 | 620 | 940 | 769 | | ALK. | t | 152 | 92 | 14 | 1 | 8 | 4 | 4 | ω | 20 | 14 | 8 | 1 | 0 | 9 | 23 | | IRON | 1.90 | .08 | 91. | 1.80 | 3.20 | 3.20 | .74 | 74 | 2.20 | .24 | .50 | 1.20 | .21 | 2.30 | 1.85 | 1.30 | | SULFATE | 5625 | 6500 | 7250 | 1350 | 5 6 25 | . 6500 | 4500 | 4500 | 4500 | 4000 | .4750 | 4000 | 1550 | 3750 | 3000 | 4530 | | ALUM. | 1.50 | 19. | 09. | 1.05 | 1.36 | 00.1 | 00.1 | 00.1 | 1.50 | 1.50 | 1.50 | 2.00 | 1.50 | 1.50 | 36. | 1.30 | | LOAD(lbs/doy) | | | • | | | | | | | | | | | | | | | ACID | 210 | 0 | 3 | 206 | 159 | 129 | 574 | 6009 | 7231 | 7115 | 4020 | 1977 | 5640 | 513 | 2064 | 3220 | | ALK | 1 | .55 | 3.55 | 7.60 | ı | 77. | 3.60 | 37.6 | 58.1 | 145.2 | 94.1 | 50.5 | 1 | 8.2 | 13.1 | 54 | | IRON | | | | - | | | | | | | | | | | | 6.5 | | SULFATE | 1012 | 23 | 44 | 729 | 675 | 624 | 4050 | 42390 | 32670 | 29040 | 31950 | 11234 | 12500 | 3105 | 6588 | 21200 | | ALUM | | | | | | | | | | | | | | | | 6.7 | #### COMMENTS: Moved Station Downstream Beginning 1/71. Average load data reported is based on estimated rates at same location for first six months and actual rates after 1/71. Flow data is suspect based on field difficulties encountered. STATION 13 | | | | | | 0 4 7 | E 0 | Ų | SAM | 0 N.1. 7 d | | | |-------------------------------|---------------|-------|-------|------|-------|-------------|------|------|------------|--|----------| | Water
Quality
Parometer | 0//7 | 10/70 | 12/70 | 17/2 | 3/71 | 4/71 | 1//5 | 17/9 | 17/7 | | AVG. for | | | | | | | | | | | | | | | FLOW (q.p.m.) | <u>.</u>
5 | 4 | 48 | 24 | 50 | 20 | 20 | 7 | | | 22 | | | | | | | | | | | | | | | Нd | 5.3 | 5.8 | 5.9 | 5.7 | 6.2 | 8. 9 | 6.7 | 5.5 | 0.9 | | 6.0 | | CONC. (MG/L): | | | | | | | | | | | | | ACID | 70 | 188 | 978 | 64 | 438 | 92 | 40 | 82 | 420 | | 261 | | ALK. | 86 | 94 | 22 | 106 | 22 | 36 | 40 | 40 | 52 | | 55 | | I RON | .25 | 0 | .05 | .03 | 01. | 0 | 0 | .70 | .13 | | .14 | | SULFATE | 3500 | 4375 | 3000 | 2750 | 3125 | 2750 | 3125 | 3000 | 2025 | | 3072 | | ALUM. | .03 | 0 | .21 | 90. | 50. | 14 |
.02 | .03 | .05 | | .07 | | _OAD(Ibs/day) | | | , | | | | | | | | | | ACID | 12.6 | 0.6 | 563 | 18.4 | 263 | 182 | 96 | 6.9 | 09 | | 69 | | ALK | 15.5 | 4.5 | 12.7 | 30.5 | 13.2 | 9.8 | 9.6 | 3.4 | 7.4 | | 11.7 | | IRON | | | | • | | | | | | | 1 | | SULFATE | 630 | 210 | 1728 | 5610 | 1898 | 099 | 750 | 252 | 291 | | 1336 | | ALUM | | | | | | · | | | | | 1 | COMMENTS: STATION 14 | • | | | | | 7 4 0 | u | <i>y</i> 0 | . \$ | , × | ٠. | | | | |-------------------------------|------|------|------|------|-------|------|------------|------|-----|----|---|---|--------------| | Water
Quality
Parameter | 0// | 17/2 | 3/71 | 4/71 | 5/7 | 17/0 | 17/1 | | 4 | | | |
AVG. for | | FLOW (g.p.m.) | 15 | 18 | 20 | 20 | 09 | 0_ | 01 | | | | | | 22 | | | | 1 | | | | | | | | | | | | | НФ | 5.4 | 5.9 | 5.7 | 6.5 | 5.7 | 6.0 | 6.1 | | | | | | 5.9 | | CONC. (MG/L): | | | | | | | | | | | | | | | ACID | 112 | 584 | 194 | 91 | 999 | 901 | 252 | | | | | | 276 | | ALK. | 1.18 | 124 | 98 | 114 | 102 | 88 | 132 | | | | | | = | | RON | .40 | .05 | 01. | .20 | 01. | 81• | 1.05 | | | | • | | .25 | | SULFATE | 3250 | 2500 | 3125 | 2400 | 2300 | 2500 | 1875 | | | | | | 2564 | | ALUM. | .75 | .07 | .20 | .70 | 90* | .02 | .12 | | | | | | 1,60 | | LOAD(Ibs/day) | | | , | | , | | | | | | | | | | ACID | 20 | 126 | 47 | 3.8 | 480 | 12.7 | 30.2 | | | | | | 73 | | ALK | 21 | 27 | 24 | 27 | 73 | 01 | 91 | | | | | | = | | IRON | | | | • | . ^ | | | | | | | | 1 | | SULFATE | 585 | 540 | 728 | 576 | 1660 | 300 | 225 | | | | | | 640 | | ALUM | | ٠ | | | | | | | | | | · | 1 | | | | | | | | | | • | | | | | | COMMENTS: | W | | | | | DAT | E 0 | ٠
ا | A | 1 7 0 | <i>o</i>
> | | | • | | | |----------------------|------|------|--------|-------|-------|-------|--------|-------|-------|---------------|------|-------|--------|------|--------------------| | Quality
Parameter | 0// | 0//6 | 10/70 | 10/70 | 11/70 | 01/11 | 12/70 | 17/1 | 2/71 | 3/71 | 4/71 | 12/5 | . 12/9 | 17/7 | AVG. for
PERIOD | | | | | | | | | | | | | | | | | | | FLOW (g.p.m.) | 120 | 120 | 09 | 09 | 06 | 120 | 160 | 120 | 120 | 1,20 | 120 | 96 | 120 | 92 | 108 | | | | | | | | | | | - | | | | | | | | ЬН | 6.2 | 7.1 | 9.9 | 5.8 | 6.1 | 6.1 | 6.1 | 6.2 | 6.2 | 6.5 | 6.4 | 6.2 | 6.3 | 0.9 | 6.3 | | CONC. (MG/L): | | | | | | | | | | | | | | | 4 | | ACID | 478 | 40 | 0 | 0 | 950 | . 52 | 284 | 1532* | 632 | 32 | 186 | 642 | 84 | 372 | 288 | | ALK. | 256 | 294 | 292 | 548 | 330 | 390 | 284 | 288 | 304 | 300 | 294 | 108 | 316 | 328 | 310 | | RON | .28 | .29 | .57 | 1.10 | .05 | 1.70 | 01. | .65 | .02 | 01. | 1.10 | .23 | 84. | 04. | . 55 | | SULFATE | 3750 | 4375 | . 3500 | 1500 | 4750 | 5000 | 4250 | 2000 | 3750 | 4500 | 4000 | 3250 | 4375 | 3000 | 3214 | | ALUM. | .17 | 90. | 0 | 0 | 0 | 0 | .02 | .03 | 0 | 0 | 0 | .03 | 0 | 70° | .02 | | LOAD(Ibs/day) | | | | | | | | | | | | | | | | | ACID | 688 | 58 | 0 | 0 | 1026 | 74.8 | 545 | *5022 | 016 | 46 | 268 | 740 | 121 | 411 | 372 | | ALK | 369 | 423 | 210 | 395 | 356 | 562 | 545 | 415 | 438 | 432 | 423 | 124 | 113 | 362 | 403 | | IRON | | | | | | | | | | | | | | | .52 | | SULFATE | 5400 | 6300 | 2520 | 1080 | 5130 | 7200 | 8160 | 7200 | 5400 | 6480 | 5760 | 37.44 | 1575 | 3312 | 4232 | | ALUM | | | | | | | | | | · | | | | | 0. | COMMENTS: ^{*}Excluded From Calculation Of Average Values. STATION 16 | W. 19 | | | | | DAT | E 0 | ٠ نر | SAM | 7 7 d | <i>S</i> | : | • | • | | | |----------------------|-------|------|-------|-------------|-------|-------|-------|-------|-------|----------|------|------|------|------|--------------------| | Quality
Parameter | 07/7 | 9/70 | 10/70 | 10/70 10/70 | 11/70 | 11/70 | 12/70 | 1//1 | 2/71 | .3/71 | 4/71 | 5/71 | 6/71 | 1/71 | AVG. for
PERIOD | | | | | | | | | | | ľ | | | | | | | | FLOW (g.p.m.) | 120 | 15 | 20 | 30 | 20 | 30 | 38 | 45 | 30 | 40 | 30 | 30 | 30 | 34 | 36 | | | | | | | | | | | | • | | | | | | | Hd | 5.7 | 9.9 | 9.9 | 5.6 | 6.1 | 6.2 | 6.2 | 6.4 | 6.3 | 5.8 | 5.4 | 6.1 | 6.6 | 6.1 | 9 | | CONC. (MG/L): | | | | | | | | | | ને | | | | | | | ACID | 656 | 250 | 38 | 104 | 525 | 648 | 14 | 1808* | 730 | 224 | 344 | 704 | 40 | 448 | 364 | | ALK. | 264 | 176 | 322 | 292 | 254 | 326 | 242 | 244 | 254 | 198 | 216 | 196 | 238 | 266 | 250 | | I RON | 1.701 | .65 | .93 | .53 | .14 | 3.00 | .75 | 2.00 | .14 | .20 | 1.50 | .23 | . 25 | 2,85 | 1.06 | | SULFATE | 4000 | 4500 | 5000 | 1500 | 4500 | 4750 | 4250 | 5000 | 4500 | 5000 | 4375 | 4000 | 5000 | 3000 | 4251 | | ALUM. | .05 | .04 | .02 | 90. | 0 | 20° | 90° | .02 | 0 | .02 | 0 | .03 | 0 | 60. | .03 | | LOAD(lbs/day) | | | | | | | · | | | | | | | | | | ACID | 945 | 45 | 91 | 37 | 125 | 233 | 6.4 | *916 | 263 | 108 | 124 | 253 | 14.4 | 183 | 157 | | ALK | 380 | 32 | 77 | 105 | 61 | 117 | 110 | 132 | 91 | 95 | 79 | 70 | 98 | 108 | 110 | | IRON | | | | • | · | | | | | | | | | | .54 | | SULFATE | 5760 | 810 | 1200 | 540 | 1080 | 1710 | 1938 | 2700 | 1620 | 2400 | 1575 | 1440 | 1800 | 1224 | 1842 | | ALUM | | · | | | | | | | | | | | | | .02 | COMMENTS: *Excluded From Calculation of Average Values. STATION 17 | 3 | | | | | 0 4 7 | E 0 | u, | N R S | £ 7 d | 7. N G | | | • | | | |----------------------|------|------|-------|-------|-------|-------|-------|-------|-------|--------|------|------|------|------|--------------------| | Quality
Parameter | 0// | 9/70 | 10/70 | 10/70 | 11/70 | 11/70 | 12/70 | 1/71 | 2/71 | .3/71 | 4/71 | 5/71 | 6/71 | 1//1 | AVG. for
PERIOD | | FLOW (g.p.m.) | 06 | 09 | 120 | 06 | 99 | 06 | 75 | 75 | 144 | 240 | 184 | 140 | 100 | 87 | | | | | | | | | | | | 1 | | | | | | | | Hd | 5.0 | 5.7 | 6.2 | 5.6 | 6.0 | 5.7 | 5.8 | 5.0 | 0.9 | 5.4 | 6.5 | 6.4 | 6.0 | 6.5 | 5 | | CONC.(MG/L): | | | | | - | | | | | | | | | | | | ACID | 182 | 188 | 172 | 242 | 1022 | 608 | 236 | 188 | 762 | 588 | 522 | 564 | 276 | 494 | 43, | | ALK. | 52 | 210 | 248 | 160 | 142 | 110 | 42 | 24 | 68 | 8 | 90 | 184 | 138 | 168 | - | | IRON | 3.2 | 3.2 | 3.3 | 3.3 | 3.3 | 3.0 | 1.0 | 6.0 | 2,6 | 5. | 2.9 | 6. | 1.8 | 3.4 | 2. | | SULFATE | 4750 | 4375 | 3750 | 4500 | 4750 | 5000 | 4000 | 4000 | 4250 | 5750 | 4000 | 3500 | 1250 | 2425 | 402 | | ALUM. | 1.50 | .95 | .23 | 1.20 | 1.30 | 1.50 | .78 | 1.50 | • 04 | 1.00 | .15 | .40 | • 04 | 80. | 7. | | LOAD(lbs/day) | | | | | | | · | | | | | | | | | | ACID | 197 | 135 | 248 | 261 | 736 | 657 | 212 | 169 | 1317 | 1693 | 1153 | 948 | 331 | 516 | 57. | | ALK | 56 | 151 | 357 | 173 | 102 | 119 | 39 | 22 | 117 | 23 | 198 | 309 | 165 | 175 | 14 | | RON | | | | • | | | | | | | | | | | .2. | | SULFATE | 5130 | 3150 | 5400 | 4860 | 3420 | 5400 | 3600 | 3600 | 7344 | 16560 | 8832 | 5880 | 1625 | 2531 | 552 | | ALUM | | | | | | | | | | | | | | | 8 | COMMENTS: STATION 17A | - A | | | | | 0 A T | E | 0 6 | SAM | 1. 7 d | 7. N G | | | |----------------------|-------|-------|-------|-------------|-------|-------|-------|-------|--------|--------|--|----------| | Quality
Parameter | 10/70 | 10/70 | 11/70 | 1/71 | 17/2 | 3/71 | 4/71 | 5/71 | 6/71 | 17/7. | | AVG. for | | | | | | | | | | | | | | | | FLOW (g.p.m.) | 06 | 240 | 240 | 378 | 914 | 1340 | 480 | 590 | 267 | 704 | | 524 | | | | | | | | | | | | | | | | Нd | 6.5 | 5.6 | 6.4 | 6.1 | 6.1 | 6.2 | 6.5 | 5.2 | 5.7 | 6.7 | | | | CONC. (MG/L): | | | | | | | | | | | | | | ACID | 130 | 80 | 436 | 972 | 544 | 280 | 138 | 1372* | 0 | 370 | | 328 | | ALK. | 150 | 80 | 174 | 28 | 56 | 22 | 78 | 34 | 74 | 9 | | 8 | | RON | .40 | 06. | 1.00 | <u>.</u> 65 | .80 | .40 | .62 | .25 | .33 | 1.10 | | .65 | | SULFATE | 3625 | 2450 | 3750 | 5250 | 4500 | 4375 | 4500 | 3500 | 3750 | 2000 | | 3770 | | ALUM. | .17 | .10 | .57 | 50. | 60. | . 10 | .17 | .19 | 0 | .24 | | .17 | | LOAD(Ibs/day) | | | | | | | | | | | | | | ACID | 140 | 230 | 1256 | 4409 | 5967 | 4502 | 795 | 9714* | 0 | 3126 | | 2060 | | ALK | 162 | 230 | 501 | 127 | 614 | 353 | 449 | 240 | 237 | 975 | | 400 | | IRON | | | | | | | | | | | | 3.6 | | SULFATE | 3915 | 7056 | 10800 | 23810 | 49330 | 70300 | 25920 | 24780 | 12015 | 16896 | | 24880 | | ALUM | | · | - 1 | | | | | | | | | 5.0 | COMMENTS: ^{*}Excluded From Calculation Of Average Values. | - Notes | | | | | OATE | 0 | Ų | SAM | 7 d | 9 N 1 | | | | | | |----------------------|------|------|------|-----------------------------------|-------
--|-----------------------------|--|-----|----------------------|--|---|---|--|--------------------| | Quality
Parameter | 07/7 | 3/71 | 17/5 | 12/9 | 17/71 | | | | | | | | | | AVG. for
PERIOD | | FLOW (g. p.m.) | Hd | 5.9 | 6.5 | 6.4 | 5.5 | 6.3 | | | | | | | | | | 6.1 | | | | ! | | | | | | | | | | | | T- | | | ACID | 88 | 244 | 178 | 204 | 216 | | | | 704 | | | | | | 186 | | ALK. | 01 | 30 | 62 | 12 | 72 | | | | | | | | | | 37 | | IRON | .36 | 1.60 | .32 | 81. | .12 | | | | | | | | | | .51 | | SULFATE | 3500 | 4000 | 1425 | 3750 | 2050 | | | | | | | | | | 2945 | | ALUM. | 96. | .02 | .05 | 10. | .03 | | | | | | | | | | .21 | | LOAD (lbs/day) | | | | y s reconstitutional contractors. | | | -contratements and a second | do-duckerins years—— " double pro- | - | design of the second | Approximate and Approximate Ap | and a manual control of the second | Andreas | 2 - Tarana (1900) - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | | | ACID | | | 1 | | | 4 PORTO TOTAL DE LA COLONIA | | מיין אינון אינון אינון אינון פון פון פון פון פון פון פון פון פון פ | | | | | ¥1500. | | ļ
! | | ALK | | | | | | | | | | | | | | | | | IRON | | | | | | | ! | | | | | | | : | | | SULFATE | | | | | | | | | | | | | | | 1 | | ALUM | | | | | | | | | | | | | | - | | | | | | | e. | | | | | | | | *************************************** | | | | COMMENTS: Pond. No flow. | - Motor | | | 1 , | | 0 4 7 1 | E 0 | Ų | SAM | 1 7 d | 9
N | | | | | | |----------------------|------|------|------|------|---------------------------|---------------------------|--------------------------|--|-------|--------|--|---|---------------------------------------|------------------------|--------------------| | Quality
Parameter | 07/7 | 3/71 | 5/71 | 12/9 | 17/7 | | | | | | | | | | AVG. for
PERIOD | | FLOW (g.p.m.) | Ha | 5.7 | 6.3 | 6.9 | 6.3 | 5.9 | | | | | | | | | | 6 9 | | CONC.(MG/L): | | | | | | - | | | | | | | | | 2.0 | | ACID | 350 | 252 | 206 | 0 | 58 | | | | | | | | | 1. | 172 | | ALK. | 142 | 50 | 102 | 901 | 011 | | | | | | | | | | 102 | | RON | .12 | 01. | 90. | 01. | .05 | | | | | | | | | | .08 | | SULFATE | 3500 | 4375 | 3000 | 3750 | 425 | | | | | | | | | | 3010 | | ALUM. | .02 | .30 | .03 | 0 | 0 | | | | | | | | | | .07 | | LOAD(Ibs/day) | | | | | District our construction | al resultant and a second | The second second second | | | d | | | · · · · · · · · · · · · · · · · · · · | Addition of the second | | | ACID | | | | | | d d | | | | | | | | | | | ALK | | | | | | | | | | | | | | : | | | IRON | | | | | | | | | | | | | | - | | | SULFATE | | | | | | | | | | | | | | | | | ALUM | 4 | | | The second second | The state of s | | | | Å | | | | COMMENTS: Pond. No flow. STATION 19A | W + 0 V | | | | | D A 7 | E 0 F | SAM | , 7 d | 0 N.T. 7 | · | ; | • | | | |----------------------|------|------|-------|------|-------|-------|-----|-------|----------|---|---|---|--|--------------------| | Quality
Parometer | 2/71 | 3/71 | 4/71 | 5/71 | 6/71 | 17/7 | | | | | | | | AVG. for
PERIOD | | | | | | | | | | | | | | | | | | -LOW (g.p.m.) | 6 | 30 | 8 | 15 | 5 | 6 | | | | | | | | 12 | | | | | | | | | | | • | | | | | | | Нd | 6.4 | 4.7 | * 6.4 | 6.7 | 6.4 | 6.4 | | | | | | | | 6.4 | | 30NC.(MG/L): | | | | | | | | | | | | | | | | ACID | 456 | 216 | 260 | 132 | 58 | 420 | | | | | | | | 257 | | ALK. | 70 | 26 | 0.9 | 94 | 54 | 100 | | | | | | · | | 29 | | 1 RON | .04 | . 10 | 0 | .01 | .08 | .22 | | | | | |
 | .07 | | SULFATE | 3750 | 5000 | 4000 | 3125 | 73750 | 2375 | | | · | | | | | 3100 | | ALUM. | 0 | 0 | .05 | 90. | 0 | •04 | | | | | | | | .02 | | _OAD(lbs/doy) | | | | | | | | | | | | | | | | ACID | 49 | 78 | 25 | 24 | 3,5 | 45 | | | | | | | | 37 | | ALK | 7.6 | 9.4 | 5.7 | 16.9 | 3.2 | 10.8 | | | | | | | | 8.9 | | IRON | | | | | · | | | | | | | | | .01 | | SULFATE | 405 | 1800 | 384 | 562 | 225 | 256 | | | | | | | | 605 | | ALUM | | · | | | | | | | | | | | | 0 | COMMENTS: ^{*}Excluded From Calculation Of Average Value. STATION 20 | Water | | | • | | 0 A T | الا
لا | 0 F | SAM | 7 0 | <i>9 N</i> / | _ | | • | • | | |---------------|------|------|------|------|-------|---|-----|-----|-----|--------------|---|---|---|-----|--------------------| | Quality | 0/// | 17/2 | 12/5 | 12/9 | 1//1 | | | | | - | | | | A G | AVG. for
PERIOD | | | | | | | | | | | | | | | | | | | FLOW (g.p.m.) | | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | | | | | | Н | 5.9 | 6.5 | 5.3 | 6.5 | 5.9 | | | | | | | | | | 6.0 | | CONC. (MG/L): | | | | | | | | | | | | | | | | | ACID | 794 | 94 | 170 | 0 | 76 | | | | | | 9 | | | | 227 | | ALK. | 84 | 180 | 130 | 126 | 136 | | | | | | | | | | 131 | | RON | .05 | | .26 | - | 70. | | | | | | | | | | = | | SULFATE | 3125 | 4000 | 3000 | 3750 | 1925 | 1. | | - | | | | | | | 3160 | | ALUM. | .04 | .03 | 0 | 0 | .03 | | | | | | | | | | .02 | | LOAD(Ibs/day) | | | | | | *************************************** | | | | | | | | | | | ACID | | | | | | | | | | | | | | | | | ALK | | | | | | | | | | | | | | | | | IRON | | | | | | | | | | | | | | | | | SULFATE | | _ | | | | | | | | | | | | | 1 | | ALUM | | | | | | | | | | | | · | | | 1 | | | | | | | | | | | | | | | | | | COMMENTS: Pond. No flow. | - setow | | | , | - | DAT | ξ (| 0 F | SAM | 1 7 d | 9 N | | | | | |----------------------|------|------|------|------|------|-----|-----|-----|-------|-----|---|---|--|--------------------| | Quality
Parameter | 0//7 | 3/71 | 17/5 | 12/9 | 17/7 | | | | | | | | | AVG. for
PERIOD | | , | | | | | | | | | | | | | | | | FLOW (9.p.m.) | | | · | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | Нф | 9.9 | 6.5 | 5.9 | 6.4 | 6.3 | | | | | | | | | 6.3 | | CONC. (MG/L): | i | | | | | | | | | | | | | | | ACID | 0 | 22 | 746 | 12 | 238 | | | | | | ٠ | | | 204 | | ALK. | 116 | 168 | 142 | 06 | 148 | | | | | | | | | 133 | | RON | 02 | .2 | .07 | .05 | 10. | | | | | | | | | .07 | | SULFATE | 2250 | 3250 | 2500 | 3125 | 1775 | | | | | | | , | | 2580 | | ALUM. | .07 | 0 | 0 | 0 | .02 | | | | | | 7 | | | 0. | | LOAD(Ibs/day) | | | | | | | ì | | | | | | | | | ACID | - T | | | | | | | | | | | | | 1 | | ALK | | | | | | | | | | | | | | ı | | IRON | | | | | | | | | | | | | | 1 | | SULFATE | | | | | | | | | | | | | | 1 | | ALUM | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | COMMENTS: Pond. No flow. | ļ | AVG. for PERIOD | 753 | | 6.5 | | 31 | 128 | .07 | 423 | .04 | | 280 | 066 | .78 | 3900 | .56 | |-------|----------------------|--------------|---|-----|---------------|------|------|-----|---------|-------|---------------|------|------|------|---------|------| 17/7 | 197 | | 9.9 | | 0 | 104 | .02 | 400 | -00 | | 0 | 245 | | 945 | | | | 12/9 | 46 | | 6.4 | | 2 | 911 | .05 | 300 | -0. | | • | 64 | | 165 | | | | 17/5 | 108 | | 6.2 | | 0 | 86 | 01. | 75 | 0 | | 0 | = | | 16 | | | | 4/71 | 273 | | 9.9 | | 18 | 168 | .02 | 375 | 0 | | 59 | 609 | | 1228 | | | N G | 3/7! | 2140 | | 6.4 | | 40 | 09 | 01. | 325 | .02 | | 1027 | 1540 | | 8330 | | | 1 7 d | 17/2 | 383 | | 9.9 | | 09 | 168 | .02 | 50 | .02 | | 276 | 772 | | 230 | | | AM | 1//1 | 1615 | | 6.9 | | 76 | 92 | .14 | 500 | 90. | | 1473 | 1473 | | 0696 | | | FS | 12/70 | 1605 | | 6.2 | | 26 | 70 | Ò | 575 | 01. | | 501 | 1348 | | 11,675 | | | E 0 | 01/11 | 1080 | | 6.9 | | 76 | 06 | .03 | . 75 | .04 | | 985 | 1167 | | 972 | | | DAT | 07/11 | 1200 | | 6.7 | | 22 | 99 | .12 | 1000 | .05 | | 317 | 156 | | 14,400 | | | | 07/01 | 1125 | | 6.0 | | 0 | 440 | 01. | 75 | .04 | | 0 | 5929 | | 1101 | | | | 07/01 | 45 | - | 6.8 | | 0 | 114 | .05 | 625 | .03 | | 0 | 62 | | 338 | | | | 9/70 | 120 | | 6.4 | | 0 | 128 | .08 | 875 | .02 | | 0 | 185 | | 1260 | | | | 0//7 | 009 | | 6.2 | | 108 | 110 | 01. | 675 | .03 | | 778 | 792 | | 4860 | | | Water | Quality
Parameter | FLOW(g.p.m.) | | Н | CONC. (MG/L): | ACID | ALK. | RON | SULFATE | ALUM. | LOAD(Ibs/day) | ACID | ALK | IRON | SULFATE | ALUM | COMMENTS: STATION 23 | 10400 | | | | | 0 4 7 | E 0 | ٠
. بر | AMPLING | | | |----------------------|------|-------|--|------|-------|------|-----------|---------|--|--------------------| | Quality
Parameter | 0/// | 12/70 | 17/2 | 3/71 | 1//4 | 5/71 | 17/7 | | | AVG. for
PERIOD | | FLOW(q.p.m.) | 7 | 26 | 2 | r. | 2 | C | 7 | | | [2] | | | | 2 | | £ | | 2 | | | | | | Н | 6.2 | 6.2 | 6.7 | 9.9 | 6.7 | 6.1 | 6.8 | | | 6.5 | | CONC.(MG/L): | | | | | | | | | | | | ACID | 112 | 34 | 0 | 18 | 2 | 0 | 124 | | | .41 | | ALK. | 124 | 40 | 104 | 52 | 96 | 94 | 132 | | | 92 | | RON | .22 | .02 | 0 | 01. | .02 | 90• | .03 | | | .04 | | SULFATE | 009 | 375 | 200 | 450 | 375 | . 50 | 1300 | | | 418 | | ALUM. | - | 01. | 0 | ·05 | 0 | 0 | 10. | | | .03 | | LOAD(Ibs/day) | | | | | | | | | Charle To and the Control of Con | | | ACID | 4.0 | 9.4 | 0 | 5.6 | - | 0 | 10.4 | | | 5.9 | | ALK | 4.5 | 8.01 | 3.7 | 28.0 | 3.4 | 10.1 | 11.0 | | | 8.9 | | IRON | | | | | | | | | | 0 | | SULFATE | 22 | 101 | 7 | 243 | 15 | 9 | 109 | | | 63 | | ALUM | | | | | | | , | | | 0 | | | | | , The state of | | | | | | | | COMMENTS: | , o tow | | • | 0 | ATE | 0 | ى
لا | A
S | 1 7 d | <i>⊗</i> | : | : | • | | : | | |----------------------|------|---|---|-----|---|---------|--------|-------|----------|---|---|---|---|--------|--------------------| | Quality
Parameter | 02/7 | | | | | | | | | | | |
| A
F | AVG. for
PERIOD | | FI OW (a a m.) | | | | | | | | | | | | - | - | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | Н | 6.4 | | | | | | | | | | | | | | 6.4 | | CONC. (MG/L): | | | | | | | | | | | | | | | | | ACID | 0 | | | | | | | | | | | | | | 0 | | ALK. | 252 | | | | | | | | | | | | | | 252 | | RON | .08 | | | | | | | | | | | | | | .08 | | SULFATE | 1925 | | | | , | | | | | | | | | | 1925 | | ALUM. | .03 | | | | | | | | | | | | | | .03 | | LOAD(lbs/day) | | | | | | , | | | | | | | | | | | ACID | ı | | | | - | | | | | | | | | | ı | | ALK | 1 | | | | | | | | | | | | | | 1 | | IRON | 1 | | | | | | | | | | | | | | ı | | SULFATE | 1 | | | | | | | | | | | | | | ŀ | | ALUM | • | | | | | | | | | | | | | | 1 | COMMENTS: Pond. Could not reach site due to poor road condition. | 9 | | | | - | 0 A T | E 0 | S, | A | 17 d | <i>9</i> × | | | | |----------------|------|-------|-------|------|-------|------------|------|-------------------------|--------|------------|--|--------------------|--------------------| |) of lity | 8/70 | 12/70 | 12/70 | 1/71 | 17/2 | 3/71 | 4/71 | 5/71 | 12/9 | 17/7 | | A O | AVG. for
PERIOD | | (m.q.p) 110.15 | 150 | 120 | 180 | 200 | 150 | 538 | 120 | 091 | 50 | 80 | | | 175 | | *** | , | | | | 7 | | | | | | | | | | | 5.7 | 1.9 | 6.5 | 6.7 | 6.3 | 5.5 | 5.5 | 6.0 | 6.0 | 6.5 | | · | 6.1 | | COMC (MG/L): | | | | | | | | | | | | | | | (1) | 548 | 542 | 264 | 48 | 248 | 158 | 370 | 0 | 534 | 334 | | | 30,5 | | L K | 80 | 78 | 58 | 52 | 46 | 4 | 58 | 86 | 54 | 74 | | | 59 | | 708 | .40 | •04 | •04 | .15 | .23 | 1.80 | .60 | 90. | 2.50 | .60 | | | .64 | | 37.47.000 | 2000 | 1650 | 0061 | 1750 | 1650 | 1575 | 1750 | 2000 | 1750 | 2125 | | | 1815 | | W. Tr | 1.30 | .17 | 00.1 | 00.1 | .70 | 00.1 | ,32 | 01. | 09. | .36 | Application and the second of | | 99. | | : | | | | | | | | | | | The state of s | ortal organization | | | ACID | 986 | 780 | 570 | 115 | 446 | 1021 | 533 | 0 | 320 | 321 | to a supply of the t | | 641 | | ZTZ | 144 | 113 | 126 | 125 | 83 | 56 | 84 | = | 33 | 71 | | | 92 | | - | | | | | | : | | | i
: | : | | | 2.14 | | SULFATE | 3600 | 2376 | 4104 | 4200 | 2970 | 10,150 | 2520 | 3840 | 1050 | 2160 | | | 3697 | | 5.0M | | | | | | | : | TATE TO SERVE WE ARREST | | | er egerga, er | | φ , | COMMENTS: STATION 25X | Water |) | | | | DAT | E 0 | S | AMPLING | | |----------------------|-------|------|------|------|------|------------|----------|---------|----------| | Quality
Parameter | 12/70 | 1//1 | 17/2 | 3/71 | 4/71 | 17/5 | 1//9 | 1//1 | NVG. for | | FLOW (g.p.m.) | 06 | 30 | 20 | 40 | 01 | 61 | 9 | 8 | 28 | | | | | | | | | | | • | | Нd | 4.3 | 3.9 | 4.1 | 3.9 | 4.5 | 3.5 | 3.7 | 4.2 | 4.0 | | CONC. (MG/L): | | | | | | | | | | | ACID | 284 | 656 | 894 | 790 | 868 | 344 | 1174 | 1128 | 767 | | ALK. | | | | | | | | | 1 | | IRON | 1.2 | 3.2 | 3.0 | 3.0 | 3.0 | 6.8 | 16.7 | 4.2 | 5.1 | | SULFATE | 1000 | 2500 | 1200 | 2750 | 2750 | 2000 | 3000 | 1675 | 2109 | | ALUM. | 0.1 | 7.5 | 8.0 | 7.5 | 12.0 | 7.5 | 3.0 | 12.0 | 7.3 | | LOJD(lbs/day) | | | | | | | : !
} | | | | ACID | 307 | 236 | 215 | 379 | 104 | 79 | 85 | 98 | 258 | | ALK | | | | | | • | | | | | IRON | | | | | | | | | 0.1 | | SULFATE | 1080 | 006 | 288 | 1320 | 330 | 456 | 216 | 091 | 595 | | ALUM | | | | | | | | | 1.8 | COMMENTS: STATION 27 | | _ | | | 7 | 0 4 7 1 | E | 0 6 | SAM | N.L. 7 d | 1. N G | | | , | | | , | |----------------------|---------|------|------|------|---------|---|-----|-----|----------|--------|---|---|---|---|---|--------------------| | Quality
Parometer | 8/70 | 17/2 | 17/5 | 17/7 | | | | | | | | | | | 7 | AVG. for
PERIOD | | | | | | | | | | | | - | | | | | | | | FLOW (9.p.m.) | Trickle | : | | | | | | | | , | | | | | | ı | | | | ` | | : | | | | | | | , | | | | | | | Hd | 3.6.5 | 6.7 | 6.9 | 6.4 | | | • | | | | | | | | | 9.9 | | CONC. (MG/L): | | | | | ~ | | | | | | | • | | | | | | ACID | 91 | 4 | 0 | 0 | | | | | | | | | | | | 5 | | ALK. | 152 | 130 | 152 | 134 | | | | | | | | | | | | 142 | | IRON | 01. | .10 | .03 | 1.70 | | | | | | | | | | | | .48 | | SULFATE | 100 | 75 | 250 | 250 | | | | | | | | | | · | | 170 | | ALUM. | 40° | •04 | 90* | 01. | | | | | | | - | | | | | .07 | | LOAD(lbs/day) | | | | | | | | | | | | | | | | | | ACID | | | | | | | | | | | | | • | | | 1 | | ALK | | | | | | | | | | | | | | | | ı | | IRON | | | | | | • | | | | | | | | | | • | | SULFATE | | | | | | | | | | | | | | | | 1 | | ALUM | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 4.5 | | | • | | | | | COMMENTS: Pond. No flow. STATION 28 | 3 | | | | | 7 4 0 | E 0 | ٠
. س | NA | F 1 9 | 7. N G | | , | | |----------------------|-------|-----------------|----------|----------|-------|------|----------|------|-------|--------|---|---|--------------------| | Quality
Parometer | 8/70 | 02/11 | 12/70 | 1//1 | 17/2 | 3/71 | 4/71 | 5/71 | 12/9 | 17/7. | , | | AVG. for
PERIOD | | FLOW (q.p.m.) | | \(\frac{1}{2}\) | <u> </u> | <u> </u> | 0 | Už | ιτ | | ~ | u | | | o | | | | 0 | 2 | | | , | | 2 | | | | | | | Hd | . 5.1 | 5.8 | 9.9 | 6.2 | 6.2 | 5.9 | 5.9 | 6.7 | 6.0 | 6.3 | | | 6.1 | | CONC. (MG/L): | | | | | - | | | | | | | | | | ACID | 94 | | *238 | 328 | 34. | 140 | 586 | 0 | 82 | 164 | | | 171 | | ALK. | 42 | 02 . | 54 | 178 | 124 | 901 | 146 | 150 | 88 | 102 | | | 106 | | IRON | .54 | .75 | .12 | 2.60 | 1.60 | 1.50 | .60 | .28 | .26 | .07 | | | .83 | | SULFATE | 2300 | 3500 | 1325 | 2750 | 2500 | 2500 | 3250 | 2250 | 375 | 1825 | | | 2257 | | ALUM. | .02 | 09.1 | 81. | .13 | .34 | 0 | 0 | 0 | 0 | 0 | | | .23 | | LOAD(Ibs/day) | | | | | | | | | | | 1 | | | | ACID | - | - | 43 | 59 | 5.3 | 50 | 35 | 0 | 3.0 | 9.8 | | • | 18.0 | | ALK | 1 | ı | 9.7 | 32.0 | 6.11 | 28.1 | 8.7 | 18.0 | 3.1 | 6.1 | | | 8. | | IRON | | | | - | | _ | | | | | | | .14 | | SULFATE | 1 | ş | 239 | 495 | 240 | 900 | 195 | 270 | 14 | 601 | - | | 246 | | ALUM | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | | COMMENTS: ^{*}Excluded From Calculation Of Average Value. STATION 29 | • | ,. | | | | | | | • | • | | | • | | | |----------------------|---------|-------|-------|------|-------|------|------|-------|------|------|---|---|-------|--------------------| | Water | | | | | 7 7 2 |) 3 | 7 | S A R | 1 | ه ۸ | | |
, | | | Quality
Parameter | 10/70 | 12/70 | 12/70 | 1/71 | 2/71 | 3/71 | 4/71 | 5/71 | 6/71 | 7/71 | | | á a | AVG. for
PERIOD | | | | | | | | | | | | | | | | | | *LOW(g.p.m.) | trickle | 9 | 240 | 120 | 180 | 180 | 09 | 95 | 17 | 20 | | | | 97 | | | | | | | | | | | - | • | | | | | | Нd | 9.9 | 6.4 | 6.4 | 5.6 | 5.3 | 6.1 | 9.9 | 6.7 | 6.4 | 9.9 | | | | 6.3 | | CONC.(MG/L): | | | | | | | , | | | | | | | | | ACID | 0 | 342 | 568 | 0 | 18 | 16 | 208 | 30 | 504 | 226 | | | | 191 | | ALK. | 138 | 168 | 102 | 154 | 108 | 76 | 118 | 118 | 124 | 88 | | | | 119 | | RON | .05 | .05 | .04 | . 15 | .14 | .38 | .10 | 60. | .50 | 90. | | · | | .16 | | SULFATE | 1825 | 1725 | 1275 | 1550 | 1250 | 1650 | 1175 | 1475 | 1700 | 1125 | | | | 1475 | | ALUM. | • 05 | .02 | .03 | .03 | .13 | .14 | .14 | .04 | 90. | .02 | | | | .07 | | _OAD(Ibs/day) | | | | | | | | | | | | | | | | ACID | ı | 246 | 1636 | 0 | 52 | 35 | 150 | 34.2 | 103 | 54 | | | | 222 | | ALK | 1 | 121 | 294 | 222 | 234 | 167 | 84 | 134 | 25 | 21 | • | | | 130 | | IRON | | | | | | | | | | | | | | .18 | | SULFATE | I | 1242 | 3672 | 2232 | 2700 | 3570 | 2256 | 1558 | 346 | 270 | | | | 1785 | | ALUM | | | | | | | | | | | | | | 60. | | | | | | | | | | | | | | | | | STATION 30 | W | | | | | 0 4 7 | 4 | 0 F | N V S | 1. 7 d | 7. N G | | • | | | |----------------------|-------|-------|------|------|-------|-----|------|-------|--------|--------|---|---|--|----------| | Quality
Parameter | 01/11 | 12/70 | 1//2 | 4/71 | 5/71 | 1/9 | 17/7 | | | | | | | AVG. for | | | | | | | | | | | | | | | | | | FLOW (g.p.m.) | 15 | 30 | 15 | 15 | 10 | 1 | - | | | 1 | | | | 0 | | | | | | | | | | | , | • | | · | |
 | Hd | 6.4 | 0.9 | 6.9 | 6.3 | 6.2 | 1 | 1 | | | | | | | 6.4 | | CONC. (MG/L): | | | | | | | | | | | | | | | | ACID | . 122 | 184 | 20 | 99 | 0 | 0 | 0 | | | | | | | 56 | | ALK. | . 168 | 100 | 94 | 104 | 108 | 0 | 0 | | | | | | | 82 | | IRON | .05 | .12 | 0 | .02 | 0 | 0 | 0 | | | | | • | | .03 | | SULFATE | 800 | . 75 | .775 | 850 | 825 | 0 | 0 | | | | | | | 475 | | ALUM. | .02 | .01 | 0 | 0. | .04 | 0 | 0 | | | | | | | | | LOAD(Ibs/day) | | | , | | | | | | | | | | | | | ACID | 22.0 | 66.2 | 3.6 | 11.9 | 0 | 0 | 0 | | | | | | | 0 | | ALK | 30.2 | 36.0 | 16.9 | 17.7 | 12.9 | 0 | 0 | | | | • | | | 16.2 | | IRON | | | | • | | | | | | | | | | | | SULFATE | 144 | 27 | 140 | 153 | 66 | 0 | 0 | | | | | | | S C | | ALUM | | • | | | | | | | | | | | | C | | | | | | | | | | | | | | | | | STATION 31 | | | | | | 0 A 7 | . . | ٠ لر | SAMP | N L 7 | હ | : | | | |----------------------|-------|--------------|------|------|-------|------------|------|------|-------|---|---|--|----------| | Quality
Parameter | 12/70 | 12/70 | 1//1 | 17/2 | 3/71 | 4/71 | 17/5 | 17/7 | | | | | AVG. for | | FLOW (g.p.m.) | 06 | 3 6 0 | 09 | 240 | -13 | 112 | 162 | 147 | | - | | | 165 | | | | , | | | | | | | | | | | | | HQ | 7.1 | 6.5 | 6.5 | 5.8 | 6.9 | 9.9 | 6.9 | 6.9 | | | | | 9.9 | | CONC. (MG/L): | | | | | ~ | | | | | | | | | | ACID | 0 | 200 | 0 | 236 | 0 | 2 | 0 | 462 | | | | | 113 | | ALK. | 130 | 88 | 128 | 128 | 156 | 174 | 164 | . 68 | | | | | 130 | | IRON | 90. | • 05 | 90° | .05 | .14 | 40. | 80° | .25 | | | | | 60. | | SULFATE | 1275 | 1200 | 1500 | 800 | 1625 | 1375 | 1500 | 1150 | | | | | 1305 | | ALUM. | 70° | 90* | 80. | .02 | .05 | 0 | .02 | .07 | | | | | .04 | | LOAD(lbs/doy) | | • | | | | | | | | | | | | | ACID | 0 | 098 | 0 | 680 | 0 | 2.7 | 0 | 815 | - | | | | 224 | | ALK | 140 | 380 | 76 | 369 | 218 | 228 | 318 | 611 | | | | | 233 | | IRON | | | | | | | | | | | | | .17 | | SULFATE | 1377 | 5184 | 1080 | 2304 | 2220 | 1848 | 2964 | 2028 | | | | | 2376 | | ALUM | | | | | | | | | | , | | | .07 | | | | | | | | | | * | | | | | | STATION 32 | Water | | | | | 0 A T | E C | , F | SAW | 1 7 d | 9 N | | , | | | |----------------------|-----------|-------|------|--------|--------|--------|----------|--------|--------|-----|---|---|---|--------------------| | Ouality
Parameter | 12/70 | 12/70 | 1//1 | 2/71 | 3/71 | 4/71 | 17/5 | 12/9 | 17/7 | | | | • | AVG. for
PERIOD | | FLOW (9.p.m.) | 420 | 2280 | 9 | 1166 | 1350 | 630 | 1122 | 799 | 757 | | | - | | 1065 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | • | | | | | Hď | . 6.4 | 6.6 | 9.9 | 0.9 | 6.4 | 9.9 | ,
6.1 | 6.2 | 6.5 | | | | | 6.4 | | CONC. (MG/L): | | | | | | | | , | | | | | | | | ACID | 36 | 0 | *892 | 438 | 126 | 901 | 148 | 34 | 96 | | | | | 139 | | ALK. | 86 | 58 | 40 | 09 | 34 | 80 | 44 | 112 | 1.12 | | | | | 70 | | IRON | .13 | • 08 | .55 | .30 | 01. | .12 | .08 | 1.2 | .45 | | | | | .33 | | SULFATE | 2300 | 2750 | 4500 | 2300 | 3000 | 2750 | 3125 | 3750 | 1875 | | | | | 2936 | | ALUM. | - | .14 | .15 | 01. | 01. | 90. | .07 | 0 | .03 | | | | | .08 | | LOAD(Ibs/doy) | | | | | | | | | | | | | | | | ACID | 181 | 0 | į | 6128 | 2041 | 108 . | 1993 | 326 | 872 | | | | | 1780 | | ALK | 433 | 158 | | 840 | 550 | 604 | 165 | 1073 | 1017 | | | | | 837 | | IRON | | | | | | | | | | | | | | 1.7 | | SULFATE | 11,592 | 7524 | 1 | 32,180 | 48,600 | 20,790 | 34,944 | 35,955 | 16,899 | | | | | 26,100 | | ALUM | | | | | | | | | | | | | | - | | | COMMENTS: | NTS: | | | | | | | : | | | | | | *Excluded From Calcufation Of Average Value. STATION 33 | | | | • | , | 0 A T | E 0 | جو ن ر | SAN | N.L.7 d | <i>و</i>
ج | | • | | |----------------------|-------|-------|-------|------|-------|-------|---------------|------|---------|---------------|---|---|----------| | Quality
Parameter | 12/70 | 12/70 | 1771 | 2/71 | 3/71 | 4/71 | 17/5 | 17/9 | 17/7 | | | · | AVG. for | | | | | | | | | | | • | | | | | | :LOW (g.p.m.) | 322 | 480 | 240 | 240 | 480 | 240 | 180 | 191 | 136 | | - | | 276 | | | | | | | ÷ | | | | | | | | | | Нd | 5.9 | 6.4 | 9 | 6.3 | 6.0 | 6.5 | 6.7 | 9.9 | 6.7 | | - | |
6.4 | | CONC. (MG/L): | | | | | | | | | | | | | | | ACID | 82 | 91 | 0 | 594 | 338 | 811 | [4 | 162 | 298 | | | | 180 | | ALK. | 230 | 334 | 190 | 210 | 001 | 961 | 210 | 150 | 128 | | | | 194 | | IRON | 60. | 0 | 0 | 30. | 01. | 80• | .08 | .13 | 90. | | | · | 60. | | SULFATE | 4000 | 2050 | 4000 | 3125 | 3250 | 3500 | 2750 | 4000 | 2500 | | | | 3242 | | ALUM. | .05 | O | .07 | ٤0' | 50° | 0. | .02 | .05 | .04 | | | | .03 | | .OAD(lbs/doy) | | | , | | | | | | | | | | | | ACID | 317 | 77 | 0 | 1121 | 0561 | 340 | 30 | 315 | 486 | | | | 596 | | ALK | 889 | 1924 | 547 | 909 | 217 | 339 | 441 | 115 | 208 | | | | 627 | | IRON | | | | • | | | | | | | | | .30 | | SULFATE | 15456 | 11808 | 11520 | 0006 | 18750 | 10080 | 5840 | 7720 | 4080 | | | | 10500 | | ALUM | | , | | | | | | | | · | | | = | STATION 34 | Quality 10/70 12/70 1 FLOW(g.p.m.) - 270 PH 6.2 6.6 6 CONC.(MG/L): ACID 0 240 | 1//1 | | | | | | | | | | | |---|------|------|------|------|------|---------|------|---|---|---|--------------------| | - 270
, 6.2 6.6
0 240 | | 2/7। | 3/71 | 4/71 | 17/5 | 12/9 | 17/7 | | | | AVG. for
PERIOD | | 6.2 6.6 | 09 | 40 | 09 | 20 | 45 | Dry | 12 | | | | 63 | | 6.2 6.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 1 | | | | | | | | | 0 240 | 6.2 | 6.7 | 5.7 | 6.5 | 6.7 | 5.9 | 6.8 | | - | | 6.4 | | 0 240 | | | | | |]
 - | | | | | | | | 322 | 116 | 42 | 92 | 9 | 99 | 408* | | | | 011 | | ALK . 70 46 | 50 | 78 | 36 | 54 | 50 | 44 | 108 | | | | 9 | | 1RON .09 | 0 | 0 | 90. | .25 | 10. | .15 | .32 | | | - | .10 | | SULFATE 1425 1050 | 1300 | 950 | 006 | 825 | 950 | 625 | 800 | | | | 947 | | ALUM02 | 0 | .02 | 90. | .05 | .02 | .05 | 0 | | | | .03 | | LOAD(lbs/doy) | | , | | | , | | | | | | | | ACID - 778. | 232 | 26 | 30 | 22 | F) | 0 | 59 | | ٠ | | 83 | | ALK - 149 | 36 | 37 | 26 | 13 | 27 | 0 | 91 | | | | 38 | | IRON | | | | | | | | | | | .03 | | SULFATE - 3402 | 926 | 456 | 648 | 198 | 512 | 0 | 115 | | | | 784 | | ALUM | | | | | | | | , | | | 10. | COM M E N T S: *Excluded From Calculation Of Average Value. STATION | Water | | | , | 0 | A 7 E | 0 5 | Ŋ | A | N .1. 7 | <i>9</i>
× | | | | | | |----------------------|-----------|--------|--------|---|-------|-----|---|---|---------|---------------|---|---|--|-----|--------------------| | Quality
Parameter | 1//1 | 17/2 | 3/7! | | | | | | | | | | | A G | AVG. for
PERIOD | | | | | | ; | | | | | , | | | | | | | | FLOW (g.p.m.) | 1346 | 1796 | 3160 | | | | | | | | | | | | 2100 | | | | * | | | | | | | | | | | | | | | Hd | 6.3 | 6.4 | 6.3 | | | | | - | | | | | | | 7 9 | | CONC.(MG/L): | | | | - | | | | | | | - | 1 | | | | | ACID | 344 | 172 | 180 | | | | | | | | - | | | | 1 | | ALK. | 28 | 32 | 14 | | | - | | | | | | | | | 7,57 | | RON | .70 | .44 | 1.7 | | | - | - | | | | | | | | 0.7 | | SULFATE | 1750 | 1575 | 1500 | | | | | | - | | | | | | 1610 | | ALUM. | .90 | .36 | .4 | | | | | | | | | | | | 2 12 | | LOAD(ibs/day) | | | | | | | | | | | | | | | | | ACID | 5556 | 3707 | 6826 | | | | - | | | | | | | | 2250 | | ALK | 452 | 069 | 531 | | | | | | | | | | | | 280 | | RON | | | | | | | | | | | | | | | , | | SULFATE | 28,266 | 33,944 | 26,900 | | · | | | | | | | | | - | Γ, | | ALUM | | | | | | | | | | | | | | - | ļ.
• | | | COMMENTS: | NTS | | | | | | : | | | | | | | | Loose dogs on property. No samples after 3/71. Average acid loads are estimated based on readings obtained and expected seasonal fluctuations as per other stations. STATION 38 | × 40 | | | | | ATE | . A O | SA | 7 d N | 7. N. | : ' | • | • | | | |----------------------|-----------|-------|------|---|-----|-------|----|-------|-------|------------|---|---|---|--------------------| | Quality
Parameter | 1//2 | 3/71 | 17/5 | | | - | | | | | | | , | AVG. for
PERIOD | | | | | | | | | | | • | | | | | | | FLOW (g.p.m.) | 464 | 565 | 378 | | | | | | • | | | | | 475 | | | | | | | | | | | • | | | | | | | Нф | 6.2 | 5.8* | 6.1 | | - | - | | | | | | | | 0 | | CONC. (MG/L): | - | | | | | | | | | | | | | 7.0 | | ACID | 180 | *0 | 0 | | | | | | | | | | | 06 | | ALK. | 112 | 76 | 122 | | | | | | | | | | | 103 | | RON | 0 | . 10 | .02 | | | | | | | | | · | | 0.4 | | SULFATE | 1625 | 1750 | 0001 | | | | | | | | | | | 1/18 | | ALUM. | 90. | .05 | .02 | | | | | | | | | | | | | LOAD(libs/day) | | | | | | | | | | | | | | | | ACID | 1067 | 0 | 0 | | | | | | | | | | | 513 | | ALK | 664 | 515 | 541 | | | | | | | | | | | 573 | | IRON | | | | | | | | | | | | | | .25 | | SULFATE | 9633 | 11880 | 4536 | | | | | | | | | | | 8683 | | ALUM | | ٠ | | | | | | | | | | | | .25 | | | COMMENTS: | NTS: | | · | | | | : | | | | | | | *Excluded From Calculation of Average Value STATION 39 | | AVG. for | 1210 | 6.3 | 138 | 3231 | .08 | 2004 | 1570 | 50,700 | |-------|----------------------|---------------|----------------------
--|---------|-------------------------|--|------|--| | | | | | 3. | | | | : | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 1 | The state of s | | | | | | | | | Spart a Vinney Carbon (Spart 15) | | | | | | | | | | | Andrio con | | The second secon | | G | | | | 10 mm 2 | | | THE STANDARD CONTRACTOR | | | | N / 7 | | | | TO THE PROPERTY OF PROPERT | | | And the second s | | | | A M P | | | | | , | | Constitution in the second | | | | 0 F S | | | | | | | | | | | E | | | | | | | | | To the state of th | | 0 4 7 | | | | SAN CONTRACTOR OF THE | | | The second secon | | | | | | 0 | _ | 92
20 | 7 | 0 | | 4 | 00 | | | 1/2 | 0011 | 3 6. | | 7. 1 | | 2915 1214 | 128 | 65,400 36,300 | | | 3/71 | 1320 | 6.3 | 184 | 4125 | .20 | - | 538 | 65,40 | | | 17/2 | l Ce | 6.5 | 576*
70 | 2500 | : | 0 | 0 | 0 | | Water | Quality
Parameter | FLOW (g.p.m.) | p H
CONC. (MG/L): | ACID
ALK. | SULFATE | ALUM.
LCAD (Ibs/doy) | ACID | ALK | SULFATE | COMMENTS: *Excluded From Calculation Of Average Value. STATION 40 | Woter | , | | | 0 4 | TE | 0 6 | SAMPLTIN | O | • | | | |---------------|----------------|-------|-------|-------|----|-----|----------|---|---|---|--------------------| | Quality | 17/7 | 3/71 | 4/71 | 5/71 | | | | | | | AVG. for
PERIOD | | | | | | | | | | | | | | | FLOW (g.p.m.) | 446 | 838 | 398 | 560 | | | | | | | 560 | | | | | | | | | | | | : | | | ЬН | 5.5 | 5.3 | 5.5 | 5.3 | | | | | | | 5.4 | | CONC. (MG/L): | | | | | | | | | | | | | ACID | 612 | 248 | 352 | 136 | | | | | | | 337 | | ALK. | 22 | 12 | 10 | 2 | | | | | | | = | | RON | - | .3 | .3 | 1. | | | | | | | .2 | | SULFATE | 3250 | 3250 | 2500 | 2750 | | | | | | | 2937 | | ALUM. | - | 1.5 | 1.4 | 5.1 | | | | | | | 1.3 | | LOAD(lbs/day) | | | - | | | | | | | | | | ACID | 3275 | 2494 | 1891 | 914 | | | | | | | 2265 | | ALK | 118 | 121 | 47 | 51 | | | | | | | 75 | | IRON | | | . , | | - | | | | | | 1.4 | | SULFATE | 1 7 394 | 32700 | 11840 | 18480 | | | | | | | 20200 | | ALUM | | | | | | | | | | | 8,9 | | | | | | | | | | | | | | STATION 41 | | | | | • | | | · (| , | | () | | | , | | | | | |-------------------------------|-----------|---------|---|----------|---|------------|-----|-------|-----|-----|----------|---|---|---|---|----|----------| | Water
Quality
Parameter | 3/71 | | | * | 4 | <i>E</i> (| 96 | N A N | 7 4 | × - | 5 | | | | | Ασ | AVG. for | | FLOW (g.p.m.) | 986 | - | | | | | - | | | | | Hd | 5.3 | | | | | | | | | | | | | | | | | | CONC.(MG/L): | | | | | | | | | | | | | | | | | | | ACID | 206 | | | | | | | | | | _ | | | _ | | | | | ALK. | 22 | | | | | | | | | | | | | | - | | | | IRON | | | | | | | | , | | | | • | | | | | | | SULFATE | 2500 | | _ | | | | | | | | | | | | | | | | ALUM. | 0.1 | | | | | | | | | | | | | | | | | | LOAD(Ibs/doy) | | | • | | | | | | | | | | | | | | | | ACID | 5980 | | | | | | | | | | | | | | | | | | ALK | 261 | | | · | | | | | | | | | | | | | | | IRON | 1.2 | | | | | | | | | | | | | | | | | | SULFATE | 29,600 | | · | | | | | | | | | | | | | | | | ALUM | 11.8 | | | | | | | | | | | | | | | | | | | COMMENTAL | : V L 2 | | | | | | | :: | | | | | | | | | Data not considered. Stream reading. Swamp area too difficult to reach. STATION 43 | - | | | | 0 | 0 4 7 6 | E | 0 F | SAN | 7 0 | T- N 6 | | , | | | |----------------------|-------------------|------------|--------|---|---------|---|-----|-----|-----|--------|--|---|--|--------------------| | Quality
Parameter | 1//2 | 3/71 | 17/5 | | | | | | | , | | | | AVG. for
PERIOD | | | | | | | | | | | | | | | | | | FLOW (g.p.m.) | 300 | 1075 | 360 | | | | | | | • | | | | 57B | | | | | | | | | | | | | | | | | | Н | 6.1 | 6.0 | 6.4 | | | | | | | | | | | 6 9 | | CONC. (MG/L): | | | | | | | | | | | | | | 2 | | ACID | 288 | 286 | 130 | | | | | | | | | | | 235 |
 ALK. | 50 | 12 | 50 | | | | | | | | | | | 7.5 | | IRON | .07 | .20 | .05 | | | _ | | | | | | | | - | | SULFATE | 2250 | 2750 | 2500 | | | - | | | | | | | | 2500 | | ALUM. | 0.1 | 5 | 0.1 | | | | | | | | | | | 8 | | LOAD(Ibs/doy) | | | | | | | | | | | | | | | | ACID | 10,37 | 3689 | 262 | | | | | | | | | | | 901 | | ALK | 180 | 155 | 216 | | | | | | | | | | | 173 | | IRON | | | | | | | | | | | | | | 1 | | SULFATE | 8100 | 35,500 | 008,01 | | | | | | | | | | | | | ALUM | | | | | | | | | | | | | | 1 | | | 0 ± 11 ± 11 11 00 | . 0 + 10 - | | | | | | | • | | | | | ! | COMMENTS: Average load data estimated for total survey period on the basis of seasonal fluctuations observed at downstream Station 2. STATION 44 | | | | | 0 | TE | 0 F | SAS | 7 d W | 7. N G | | ŀ | | | |----------------------|------|--------|--------|---|----|-----|-----|-------|--------|--|---|-----|--------------------| | Quality
Parameter | 17/2 | 3/71 | 12/5 | | | | | | | | | 4 1 | AVG. for
PERIOD | | FLOW (g.p.m.) | 264 | 1121 | 480 | | | | | | | | | | 621 | | | | | | | | | | | - | | | | 70 | | Н | 6.0 | 6.0 | 6.4 | | | | | | | | | - | 6.1 | | CONC. (MG/L): | | | | | | | | | | | | | | | ACID | 212 | 264 | 174 | | | | | | | | | | 217 | | ALK. | 40 | 4 | 38 | | | - | | | | | | - | 27 | | IRON | 30. | .2 | .02 | | | | | | | | | | 60. | | SULFATE | 2125 | 2375 | 2250 | | | | | | | | | | 2240 | | ALUM. | ۲. | - | 5. | | | | | | | | | | .7 | | LOAD(lbs/day) | | | | | | | | | | | | | | | ACID | 672 | 3551 | 1002 | | | | | | | | ' | - | 1617 | | ALK | 127 | 52 | 218 | | | | | | | | | | 201 | | IRON | | | | | | | | | | | | | , | | SULFATE | 6732 | 31,900 | 12,950 | | | | | | | | | | ı | | ALUM | | | , | 2 | | | | | | # COMMENTS: Average load data estimated for total survey period on the basis of seasonal fluctuations observed at downstream Station 2.