VIII ANALYSIS OF INDIVIDUAL WATERSHEDS

A. General

The purpose of this section is to analyze the mine drainage problem of the individual watersheds, relate this problem to the effect that each has on the overall system, and to recommend specific abatement measures to significantly reduce the pollution within the Pucketa Creek Drainage Basin. Each watershed analysis will include the following information:

- (1) A sketch-type map showing the location of sampling stations
- (2) Sampling station data consisting of pollution loads.

Each polluted watershed will contain the following additional information:

- (1) The location and condition of the streams which are symbolized as severely acid and iron and moderately acid and iron.
- (2) A description of pollution sources
- (3) Maps showing the location of pollution sources
- (4) Abatement recommendations.

B. Non-Polluted Systems

There are two (2) watersheds in the Pucketa Creek Drainage Basin that are classified as non-polluted. These watersheds are analyzed and described below, however, abatement recommendations are not included since the water quality of these streams are considered acceptable for the purpose of this study. The two (2) non-polluted watersheds are: Pucketa Creek (Main Stem) and Little Pucketa Creek.

PUCKETA CREEK WATERSHED (MAIN STEM)

The headwaters of Pucketa Creek Watershed (Main Stem) which exclude Unnamed Tributaries #1 and #2 for the purpose of this study, originate at a point approximately 4 miles east of Sardis, Pennsylvania. Pucketa Creek (Main Stem) flows in a northwesterly direction for about 10 miles where it discharges into the Allegheny River. The total length of the stream including all tributaries is 45.5 miles. The total area of the watershed is approximately 22 square miles.

B. Stream Condition

No source of acid mine drainage within the watershed was found; consequently, the water quality is good. Plate $\underline{3}$ shows the location of the sampling stations on the watershed.

C. Sampling Station Data

Ninety-two (92) water sampling stations were established. The water quality data obtained from these stations are listed in Tables 2 and 3.

TABLE 2

SAMPLE	FLOW		ACI	DITY	ALKAL	INITY	TOTAL	IRON	SULPH	ATES
STATION	GPM	Нq	mg/l	lbs/d	mg/l	lbs/d		lbs/d		lbs/d
1	236	6.1	7	20	12	134	0.2	0.6	50	142
1A	87	6.55	0	0	18	19	0.5	0.5	42	44
1B	323	6.55	0	0	17	66	0.3	1.2	41	159
2	94	6.6	0	0	18	20	0.6	0.7	45	51
2A	339	6.6	0	0	15	61	0.2	0.8	48	195
2B	433	6.6	0	0	18	94	0.3	1.6	64	333
3	237	6.8	0	0	17	48	0.3	0.9	47	134
3A	456	6.78	0	0	20	109	0.4	2.2	188	1029
3B	693	6.7	0	0	14	116	0.3	2.5	50	416
3C	213	6.7	0	0	14	36	0.2	0.5	41	105
3D	127	6.55	0	0	16	24	0.3	0.5	38	58
3E	86	6.65	0	. 0	12.	12	0.1	0.1	38	39
4	78	6.6	0	0	15	14	0.4	0.4	38	36
4A	711	6.7	0	0	18	154	0.3	2.6	38	324
4B	789	7.1	0	0	18	170	0.2	1.9	40	379
5	223	6.9	0	0	20	54	0.1	0.3	38	102
5A	916	6.8	0	0 '	18	198	0.2	2.2	38	418
5B	1139	6.8	0	0	16	219	0.2	2.7	38	519
6	91	6.8	0	0	17	19	0.1	0.1	46	50
6A	1183	6.82	0	0	21	298	0.3	4.3	41	582
6B	1274	6.45	0	0	20	306	0.2	3	41	627
7	267	6.7	0	0	40	128	0.1	0.3	52	167
7A	1339.	7.0	0	0	22	353	0.2	3.2	38	611
7B	1606	6.75	, 0	0	22 ·	424	0.2	3.9	38	732
8	119	6.8	0	0	24	34	0.2	0.3	46	66
8A	2227	6.8	0	0	28	748	0.2	5.3	33	882
8B	2346	6.85	0	0	47	1323	0.2	5.6	38	1070
9	161	7.15	0	0	28	154	0.2	0.4	52	100
9A	2372	7.1	.0	0	30	854	0.2	5.7	41	1167
9B	2533	7.4	0	0	51	1550	0.2	6	42	1277
9C	126	7.25	0	0	45	68	0.2	0.3	50	76
10	1238	7.2	0	0	28	416	0.2	3	43	639
10A	2614	7.4	0	0	39	1223	0.1	3.1	41	1286
10B	4218	7.2	0	0	39	1974	0.2	10	41	2075
11	166	7.2	0	0	36	72	0.3	0.6	48	. 96
11A	965	8.1	0	0	57	660	0.2	2.3	47	544
11B	1131	8.3	0	0	77	1045	0.2	2.7	52	706
12	277	8.12	0	0	42	140	0.4	1.3	47	156
12A	471	8.2	0	0	42	237	0.2	1.1	45	254
12B	748	8.1	0	0	51	458	0.2	1.8	49	440
13	162	6.8	0	0	26	51	0.2	0.4	34	66
13A	184	6.7	0	0	44	97	1.0	2.2	45	99
13B	346	6.8	0	0	32	133	0.4	1.7	45	187
13C	95	6.8	0	0	31	3 5	0.6	0.7	41	47

TABLE 2 (CONTINUED)

SAMPLE	FLOW		ACI	DITY	ALKAL	INITY	TOTAL	IRON	SULPH	ATES
STATION	GPM	Hq	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d		lbs/d
13E	42	6.78	0	0	34	′ 17	1.0	0.5	60	30
14	366	7.2	0	0	75	329	0.1	0.4	57	250
14C	321	7.2	0	0	69	266	0.5	1.9	57	220
14D	244	7.2	0	0	75	220	0.2	0.6	64	187
14E	77	7.22	0	0 -	57	53	0.4	0.4	45	42
15	212	7.3	0	0	63	160	0.5	1.3	45	114
15A	4254	7.32	0	0	43	2195	0.1	5.1	60	3063
15B	4466	7.4	0.	0	41	2197	0.1	5.4	38	2036
16	243 .	7.2	0	0	63	1184	0		79	230
16A	4487	7.5	0	0	44	2369	0.2	10.8	57	3069
16B	4730	7.6	0	0	47	2668	0		41	2327
17A	4746	7.2	0	0	48	2734	0.1	5.7	43	2449
17B	5908	6.5	0	. 0	17	1205	1.6	113	81	5743
22	142	7.02	0	0	89	152	0		83	141
22A	5987	7.2	0	0	34	2443	0.5	36	75	5388
22B	6129	7.3	0	0	31	2280	0.4	29	75	5516
23A	6162	7.4	0	0	42	3106	0.6	44	66	4880
23B	7214	7.62	0	0	43	3722	0.5	43	68	5887
27	482	6.65	0	0	69	399	0.1	0.6	75	434
27A	7275	6.78	0	0	39	3405	0.3	26	53	4627
27B	7757	6.72	0	0	43	4003	0.4	37	57	5306
28	23	6.78	0	0	74	20	0.1	0.03	77	21
28A	421	7.1	0	. 0	66	333	0.1	0.5	68	344
28B	444	7.08	. 0	0	63	336	0.1	0.5	77	410
29A	206	.7.12	0	0	60	148	0		57	141
29B	370	7.1	0	.0	67	297	0		68	302
30	18	7.15	0	0	64	14	0.4	0.09	43	9
30A	37	7.08	0	0	58	26	0		57	25
30B	55	7.12	0	0	65	43	0.1	0.07	49	32
31	71	7.15	0	0	52	44	0.1	0.09	49 ·	42
31A	93	7.12	0	0	101	113	0		113	126
31B	164	7.22	0	0	82	161	0.1	0.2	83	163
32	231	7.28	0	0	96	266	0		113	313
32A	7832	7.32	0	0	42	3947	0.3	28	68	6391
32B	8063	7.35	0	0	46	4451	0.3	29	62	5999
33	286	7.12	0	0	59	202	0.6	2	388	1332
33A	8374	7.28	0	0	47	4723	0.1	10	68	6833
33B	8822	7.33	0	. 0	52	5505	0.2	21	68	7199
34	162	7.2	0	0	145	282	0		98	191
35	74	7.12	0	0	63	56	0.1	0.09	145	129
35A	9108	7.3	0	0	53	5793	0.1	11	109	11,913
36	31	7.77	0	0	168	62	0.3	0.1	68	25
36B	9213	7.6	0	0	·55	6081	0.1	11	98	10,834
37	267	8.02	0	0	99	317	0		57	183
37B	9551	7.75	0	0	56	6418	0.1	11	94	10,774

TABLE 2 (CONTINUED)

SAMPLE	FLCW		ACIDITY		ALKALINITY		TOTAL IRON		SULPHATES	
STATION	GPM	рН	mg/l	lbs/d	mg/1	lbs/d	mg/1	lbs/d	mg/l	lbs/d
40A	9,942	8.05	0	0	66	7874	0.9	107	106	12,646
40B	11,591	7.88	0	0	68	9458	0.8	111	106	14,744

NOTE: Sample Station Data from April 10 through April 28, 1978.

TABLE 3,

	SAMPLE STATION 40B - Mouth of Pucketa Creek Drainage Basin														
	FLOW		ACID	YTI	ALKALINITY		TOTAL IRON		SULPHATES						
DATE	GPM	рH	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/D					
*3-08-78	N.M.	7.1	0		77		1.2		145						
4-28-78	11,591	7.88	0	0	68	9,458	0.8	111	106	14,744					
6-16-78	8,110	7.55	0	0	86	8,370	0.7	68	120	11,678					
Average	9,851	7.72	0	0	77	9,102	0.75	89	113	13,357					

^{*} Not included in average

LITTLE PUCKETA CREEK WATERSHED

A. General

The headwaters of Little Pucketa Creek Watershed originate about half a mile northwest of Markle, Pennsylvania. The main stem of Little Pucketa Creek flows in a general westward direction to New Kensington, Pennsylvania, where it takes a southerly course to meet Pucketa Creek.

Total stream length including all tributaries is 21.7 miles. Main stream length is 8.1 miles. The total area of the watershed is 37.2 square miles.

B. Stream Condition

No source of acid mine drainage within the watershed was found; consequently, the water quality is good. Plate 4 shows the location of the sampling stations on the watershed.

C. <u>Sampling Station Data</u>

Twenty-three (23) sampling stations were established. The water quality data obtained from these stations are listed in Table 4.

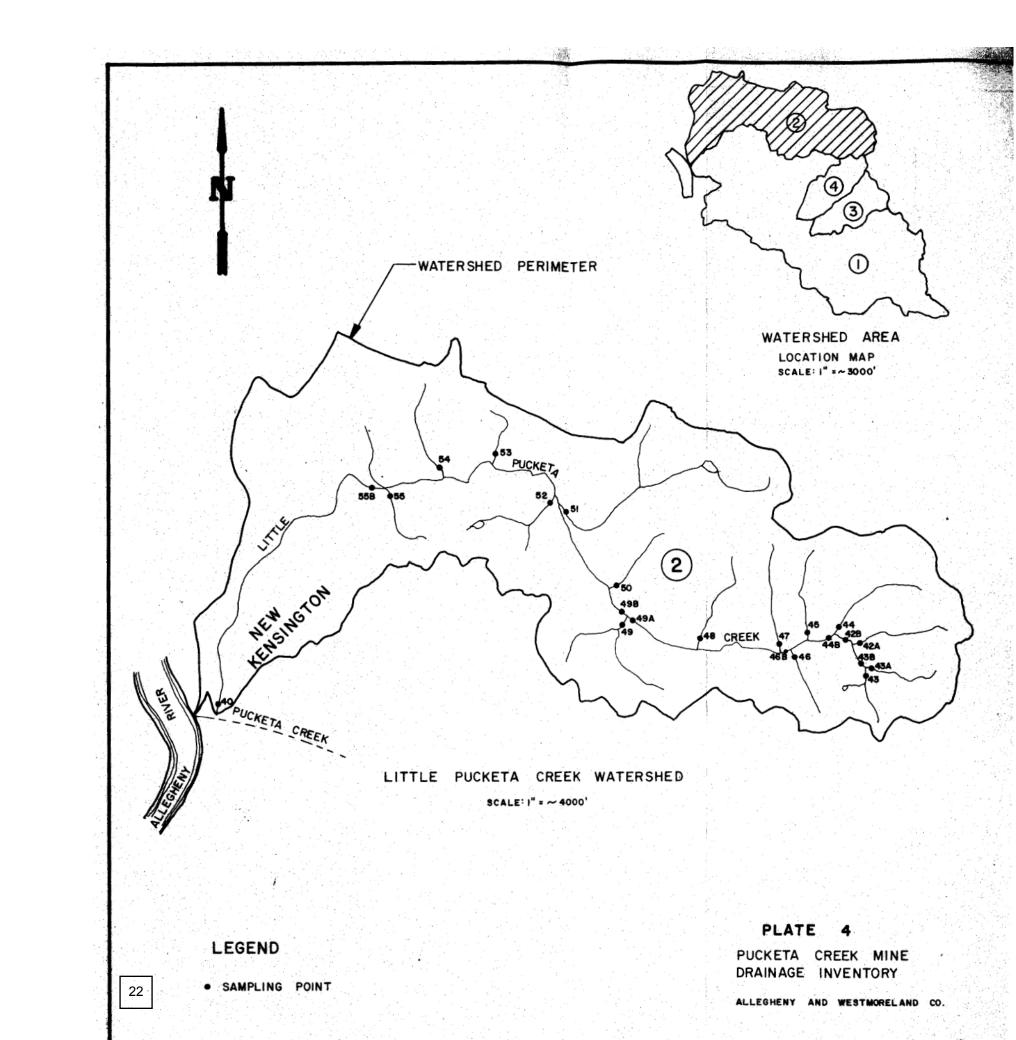


TABLE 4

SAMPLE	FLOW		ACI	DITY	ALKAL	INITY	TOTAL	IRON	SULPE	IATES
STATION	GPM	Нq	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d
42A	97	7.53	0	0 -	55	164	0.2	0.2	47	55
42B	267	7.62	0	0	66	211	0.1	0.3	49	157
43	41	7.48	0	0	83	41	0.1	0.05	45	22
43A	112	7.9	0	0	71	95	0	0	45	60
43B	153	7.85	0	0	75	138	0	0	43	79
44	136	7.72	0	0	34	55	0.1	0.2	91	149
44B	426	7.65	0	0	48	245	0.2	1.0	68	348
45	52	7.7	0	0	59	37	0.2	0.1	38	24
46	91	7.55	0	0	86	94	0.2	0.2	41	45
46B	587	7.5	0	0	37	261	0.1	0.7	68	479
47	76	6.82	0	0	81	74	0.2	0.2	49	45
48	81	7.02	0	.0	99	96	0	0	45	44
49	236	7.0	0	. 0	70	198	-0	0	51	144
49A	802	7.12	0	0	73	703	0	0	57	549
49B	1038	7.08	0	0	71	884	0.2	2.5	57	710
50	47	7.2	0	0	85	48	0.1	0.06	49	28
51	273	7.22	0	0	64	210	0	0	49	161
52	94	7.3	0	0	60.	68	0	0	57	64
53	15	7.18	0	0	34	6	0.5	0.09	40	7
54	21	7.15	0	0	50	13	0	0	57	14
55	66	7.22	0	0	81	64	0	0	75	59
55B	1620	7.65	0	0	69	1341	0.1	1.9	49	953
40	1649	8.25	0	0	73	1445	0.1	2.0	68	1346

NOTE: Sample Station Data from April 24 through April 28, 1978.

VIII ANALYSIS OF INDIVIDUAL WATERSHEDS (CONTINUED)

C. Polluted Systems

There are 2 watersheds in the Pucketa Creek Drainage Basin that are classified as polluted. The 2 polluted watersheds are Unnamed Run #1 and Unnamed Run #2. Overall stream conditions for the 2 polluted watersheds in total stream miles are:

1.	Total Stream Length	11.1
2.	Total Length Non-Polluted	8.7
3.	Total Length Severely Polluted	1.2
4.	Total Length Moderately Polluted	1.2

Approximately 22% of the polluted watershed stream length is seriously degraded by mine drainage. This represents about 3% of the total stream length within the entire Pucketa Creek Drainage Basin that is polluted. The total area of the polluted watersheds is 4.7 square miles. The study of polluted watersheds revealed 2 known major sources of mine drainage pollution from a deep mine and a surface mine area.

The pollution load at the mouth of each major polluted stream in. the watershed is shown below:

			NO. OF	ACID	ALK.	IRON	SULPHATES
SUB-BASIN	STA.	ACRES	SOURCES	LBS/DA	LBS/DA	LBS/DA	LBS/DA
Unnamed Run #1	17	1585	1	307	0	59	1576
Unnamed Run #2	23	1418	1	0	442	5	1187

Note: Above data represents the analysis of a single water sample from each station taken May, 1978.

UNNAMED RUN #1 WATERSHED

A. General

The headwaters of Unnamed Run #1 originate about 1000 feet southwest of Merwin, Pennsylvania. The main stem of Unnamed Run #1 flows in a southwesterly direction for 2.9 miles and discharges into Pucketa Creek Watershed (Main Stem). The total length of stream including all tributaries is 5.9 miles. The total area of the watershed is 2.5 square miles.

B. <u>Stream Condition</u>

An analysis of mine drainage contamination within the watershed provides the following breakdown. on stream conditions:

TABLE 5

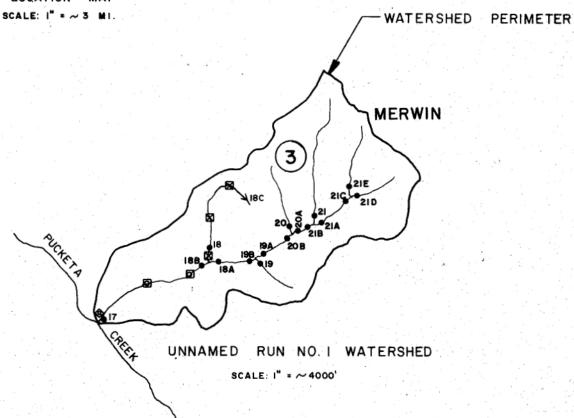
Unnamed Run #1 Watershed

Stream	Stream Length	Percent Total
Classification	Miles	Stream Length
Non-Polluted	4.0	68
Severely Polluted	0.8	14
Moderately Polluted	1.1	18

Approximately 32% of Unnamed Run #1 Watershed is seriously degraded by mine drainage. Plate <u>5</u> shows the location of the sampling stations on the watershed.

C. <u>Sampling Station Data</u>

Seventeen (17) sampling stations were established. The water quality data obtained from these stations are listed in Table $\underline{6}$.


D. Description of Pollution Source

Station No. 18C - A 73 gpm discharge from an unknown abandoned mine in the Pittsburgh Seam. The discharge had a pH of 3.1 with 1391 and 272 lbs/day of acid and iron respectively. It is located approximately 1.2 miles southwest of Merwin, Pennsylvania, on the New Kensington East Quadrangle (Enclosure #2).

WATERSHED AREA LOCATION MAP

LEGEND

- SAMPLING POINT LOCATION
 UNDERGROUND MINE W/SAMPLING POINT
- SEVERELY ACID AND IRON
- MODERATELY ACID AND IRON

PLATE 5

PUCKETA CREEK MINE
DRAINAGE INVENTORY
ALLEGHENY AND WESTMORELAND CO.

TABLE 6

SAMPLE	FLOW		ACI	DITY	ALKAL	INITY	TOTAL	IRON	SULPH	ATES		
STATION	GPM	рH	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d		
18	154	. 3.0	495	915	0	10	25	46	536	991		
18A	723	6.4	0	0	24	208	0		57	495		
18B	877	3.4	83	873	0	0	7.1	75	154	1621		
*18C(s	73	3.1	1588	1391	0	0	310	272	2011	1762		
19	52	6.2	0	0	24	15	0.2	0.1	41	26		
19A	566	6.4	0	0	25	170	0.1	0.7	49	333		
19B	618	6.5	0	0	26.	193			53	393		
20	26	6.65	0	0	28	9	0.2	0.06	65	20		
20A	403 '	6.7	0	0	25	121	0.1	0.5	56	271		
20B	429	6.7	0	. 0	25	129	0.1	0.5	55	283		
21	127	6.65	0	0	32	49	0.1	0.2	52	79		
21A	239	6.8	0	0	28	80	0.1	0.3	45	129		
21B	366	6.8	0	0	30	132	0	0	44	193		
21C	213	6.85	0	0	34	87	0.2	0.5	60	153		
21D	95	6.72	0	0	28	32	0.3	0.3	49	56		
21E	118	7.0	0	0	40-	57	0.2	0.3	55	78		
17	1162	4.4	22	307	0	0	4.2	59	113	1576		

NOTE: Sample Station Data from April 10 through April 21, 1978, except where an asterisk is indicated.

- * Sample Station Data from May 12, 1978.
- (s) Indicates pollution source

UNNAMED RUN #2 WATERSHED

A. General

The headwaters of Unnamed Run #2 Watershed originate about one (1) mile northwest of Merwin, Pennsylvania. The main stem of the watershed flows in a southwesterly direction for three (3) miles where it discharges into Pucketa Creek Watershed (Main Stem).

The total length of stream including all tributaries is 5.2 miles. The total area of the watershed is 2.2 square miles.

B. Stream Condition

An analysis of mine drainage contamination within.. the watershed provides the following breakdown on stream conditions:

TABLE 7
Unnamed Run #2 Watershed

Stream	Stream Length	Percent Total
Classification	Miles	Stream Length
Non-Polluted	4.7	90
Severely Polluted	0.4	8
Moderately Polluted	0.1	2

Approximately 10% of Unnamed Run #2 Watershed is seriously degraded by mine drainage. Plate <u>6</u> shows the location of the sampling stations on the watershed.

C. Sampling Station Data

Fourteen (14) sampling stations were established. The water quality data obtained from these stations are listed in Table 8.

D. <u>Description of Pollution Source</u>

Station No. 25C - A 37 gpm discharge from a poorly backfilled strip mine. The discharge pH was 3.15 with 614 and 75 lbs/day of acid and iron respectively. The strip is located approximately 1.3 miles west-southwest of Merwin, Pennsylvania, on the New Kensington East Quadrangle (Enclosure A).

TABLE 8

SAMPLE	FLOW		ACI	DITY	ALKAL	INITY	TOTAL	IRON	SULPH	ATES
STATION	GPM	рH	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d	mg/l	lbs/d
24	179	7.28	0	0	75	161	0.3	0.6	57	122
24A	824	7.1	0	0	26	257	0.6	6.0	83	821
24B	1003	7.38	0	0	34	409	0.4	4.8	95	1143
25	148	4.1	150	266	0	0	4.6	8.2	427	758
25A	623	6.5	0	0	40	299	0.3	2.2	80	598
25B	771	6.75	0	0	21	194	0.9	8.3	121	1119
*25C (s	37	3.15	1384	61.4	.0	0	170	75	1899	843
26	139	6.8	0	0	47	78	0.3	0.5	63	105
26A	352	6.65	0	0	42	177	0.4	1.7	86.	363
26B	491	6.7	0	0	43	253	0.4	2.4	83	489
26C	314	6.95	0	0	68	256	0.1	0.4	57	215
26D	91	7.2	0	0	67	73	0.2	0.2	57	62
26E	223	7.0	0	0	69	185	0.2	0.5	53	142
23	1052	7.0	0	0	35	442	0.4	5.0	94	1187

NOTE: Sample Station Data from April 17 through April 21, 1978, except where an asterisk is indicated.

- * Sample Station Data from May 12, 1978.
 - (s) Indicates pollution source.