APPENDIX 14

SAMPLE STATION 14

SUBSURFACE MONITORING ZONE - 80' FT.

BIG BERTHA ARTESIAN WELL

PA STATE GAME LANDS #95

PROJECT SL-110-7-101.5

MONITORING POINT 14

The discussion of this monitoring point will be divided into four (4) phases as outlined below:

- I. General Conditions
- 2. Pre Closure Analysis
- 3. Post Closure Analysis
- 4. Summary of Analysis

I. General Conditions

The data and associated graphical materials relevant to and utilized in describing the relationships at this monitoring location are outlined below:

Sheet 7 - Relationship of Geophysical Parameters

Sheet 8 - Geologic Cross Sections

Sheet 25 - Relationship of Hydrologic Parameters

Appendix 14 - Subsurface Monitoring Zone

Narrative exhibits contained on the following pages.

This monitoring point is 80' below the surface of the artesian well (Big Bertha), as shown on Sheets 7 and 8.

The flow relationships of the artesian well at this monitoring zone are given below:

- a. Velocity the average velocity of water at this monitoring zone was 6.66 ft/min upward.
- b. Cumulative Quantity the cumulative quantity of water contributed by this flow system was 17.4 gal/min
- c. Flow System Quantity the average quantity of water contributed by this flow system was 6.8 gal/min. (.015 c.f.s.)

This monitoring point is representative of conditions in flow system B3. This sample zone represents conditions of the base of this flow system and indicates unmixed waters combined from lower zones and thiszone.

2. Pre Closure Analysis (Monitoring Point 14)

The reviewer is directed to refer to the following materials during the discussion of the chemical analyses and trends at this monitoring point:

- a. Sheet 25 which shows the sample data plotted using a time reference basis.
- b. The corresponding graphs (on the 6 pages immediately following the pre closure analysis) which show the data, the regression mean line, and the field of variance.
- c. Appendix 14 which contains the raw sample data during pre closure which was utilized to develop the means, ranges, and regression analysis results.

1. pH Relationship

The pH at this monitoring point varied from 5.82 - 5.95 the mean value being 5.88. An extremely strong relationship exists.

2. Specific Conductance Relationship

The specific conductance at this monitoring point varied from 1400 - 1550 .the mean value calculated as 1464.

3. Acidity/Alkalinity Balance (mg/l)

The alkalinity varied from 38- 50; the mean value was 46. Regression analysis of the alkalinity values showed: An extremely weak relationship exists where alkalinity concentration increases as conductance increases. The acidity varied from 215 - 271; the mean value was 233. Regression analysis of the sulphate values showed: A strong relationship exists where acidity concentration increases as conductance increases.

Sulphate Relationship (mg/l)

The sulphates varied from 634 - 1039; the mean value was 831. Regression analysis of the sulphate values showed: A strong relationship exists where sulphates concentration decrease as conductance increases.

5. Total Iron Relationship (mg/l)

The total iron varied from 129 - 151; the mean value was 142. Regression analysis of the ferrous iron values showed: A strong relationship exists where total iron concentration increases as conductance increases.

6. Ferrous Iron Relationship (mg/l)

The ferrous iron varied from 121 - 146; the mean value was 134. Regression analysis of the ferrous iron values showed: A moderate relationship exists where ferrous iron concentration increases as conductance increases.

7. Ferric Iron Relationship (mg/l)

The ferric iron varied from 3- 12; the mean value was 8. Regression analysis of the ferric iron values showed: A weak relationship exists where ferric iron concentration increases as conductanceincreases.

3. Post Closure Analysis

The reviewer is referred to sheet 25 which shows the post-closure data plotted using a time reference basis with pre-closure data for comparative purposes.

Closure caused a significant increase in specific conductance; which recovered to values similar to pre closure levels after the well was opened.

pH was slightly depressed as a result of closure, and remained slightly depressed.

Alkalinity was present prior to closure at very low concentrations in this zone and closure caused a significant reduction to nearly non-alkaline conditions. Acidity was present in moderate concentrations prior to closure and increased slightly as a result of closure. This is perceived as storage effects accruing during closure.

A slight increase in sulphates occurred during closure, but returned rapidly to pre closure levels.

A slight increase in total iron concentration occurred during closure, with values returning rapidly to pre closure levels after the well was opened.

A slight increase in ferrous iron concentration occurred during closure, with values returning rapidly to pre closure levels after the well was opened.

Ferric iron levels increased slightly during closure but quickly returned to pre closure levels.

4. Summary of Monitoring Point 14 Analysis

Closure allowed a free mixing of the flow systems between the lower zones and the upper zones (with higher permeabilities, higher recharge capacities and poorer quality). The upper zones dominated the lower zones and caused a depression in the water quality of the lower zones.

Closure caused only a slight modification of the characteristics of this flow system. These were perceived to be storage related. The reason for the similarity between pre and post closure values is because this flow system dominated hydrologic interactions during closure.

SAMPLE 14

022883 030783 031483 033183

DATE

FERRIC IRON MG/L	0.2 0.3	0.5	12.0	3,0	1.1.0	0'8	9.0
FERROUS IRON MG/L	146,0	126.0	135.0	136.0	134.0	138.0	121.0
TOTAL IRON MG/L	151.0	132.0	147.0	139.0	145.0	146.0	129,0
SULPHATES MG/L	871	916	1039	1007	289	665	489
ACIDITY MG/L	223	216	. 271	230	241	232	215
ALKALINITY MG/L	000	84	8+	38	611	50	39
PH SU	5.83	₹5.91	5,85	5.82	5.87	5.95	5,93
DISCHARGE C.F.S.		7 +0.	10.	· 10 th	78.2 . HO.	h0 · `	÷0 ·
SPEC COND UMHOS/CM	1500	1400	1550	1500	1500	14.00	1.4.00

041383

042083

REC H

		10:	25	11.1600
	1025	15032	50	60253.5000
REGRESSION	COEFFICIENTS OF	NORMAL EQUATION		
	6,90499999999	9		
-	0.00070000000	0		
ORIGINAL	L X - Y PAIRS	PREDICTED VALUES	DEVIATION	
1500.000	00 5.8300	5.8550	0.0250	
1400,000	00 5.9100	5.9250	0.0150	
1550.000	00 5.8500	5.8200	0.0300	
1500.000	00 5.8200	5.8550	0.0350	
1500,000	5.9700	5,8550	0.0150	
1400.000	00 5.9500	5,9250	0.0250	
1400.000	00 5.9300	5,9250	0.0050	

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1
NUMBER OF X - Y PAIRS= 7
TOTAL SUMS OF SQUARE= .0154
SUMS OF SQUARES DUE TO REGRESSION= .01155
SUMS OF SQUARES DUE TO DEVIATION= 3.85E-3
GOODNESS OF FIT= .75
MULTIPLE CORRELATION COEFFICIENT 0.84603
STANDARD DEVIATION .025331

	ANALYSIS OF	VARIANCE	
SOURCE OF	SUM OF	DEGREES OF	MEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN. REGRESSION	.01	1	.01
DEVIATION	.00	5	.00
TOTAL VARIATION	nσ	_	

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = 15.00 LEVEL .05% - CRITICAL VALUE = 6.61

1025 1503250

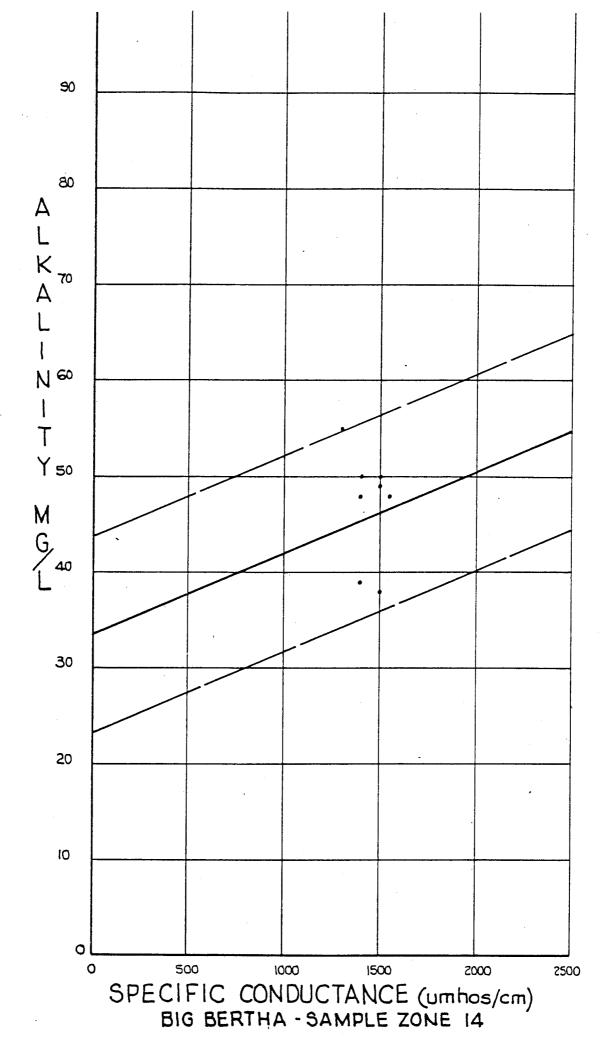
322.0000 471700.0000

1025 REGRESSION COEFFICIENTS OF NORMAL EQUATION

33,575757575758

0.008484848485

	0,000-0-0-0-0-0	•	
ORIGINAL X	- Y PAIRS	PREDICTED VALUES	DEVIATION
1500.0000	50.0000	46,3030	3,6970
1400.0000	48.0000	45.4545	2.5455
1550.0000	48.0000	46.7273	1.2727
1500.0000	38.0000.	46.3030	8.3030
1500.0000	49.0000	46.3030	2.6970
1400.0000	50.0000	45.4545	4.5455
1400.0000	39.0000	45,4545	6,4545


STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1 NUMBER OF X - Y PAIRS= 7 TOTAL SUMS OF SQUARE= 162 SUMS OF SQUARES DUE TO REGRESSION= 1.69697 SUMS OF SQUARES DUE TO DEVIATION= 160.30303 GOODNESS OF FIT= .010475

MULTIPLE CORRELATION COEFFICIENT STANDARD DEVIATION 5.168866

0.10235

	ANALYSIS OF	VARIANCE	
SOURCE OF	SUM OF	DEGREES OF	MEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN. REGRESSION	1.70	1	1.70
DEVIATION	160.30	5	32.06
TOTAL VARIATION	162.00	. 6	

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = LEVEL .05% - CRITICAL VALUE = 6.61

1500.0000

1500.0000

1400.0000

1400.0000

10.7424

0.2576

2.8636

14:1364

COEFFICIENT MATRIX AND AUGMENTED MATRIX

230.0000

241.0000

232.0000

215.0000

	1025	1025 1503250		1428.0000 2389250.0000
	REGRESSION COEFFICIENTS OF A	NORMAL EQUATION		
1	- 102.439393939398			
i	0.228787878788			
ļ	ORIGINAL X - Y PAIRS	PREDICTED VALUES	DEVIATION	
ı	1500.0000 223.0000	240.7424	17.7424	
1	1400.0000 216.0000	217.8636	1.8636	
Ì	1550.0000 271.0000	252.1818	18.8182	4

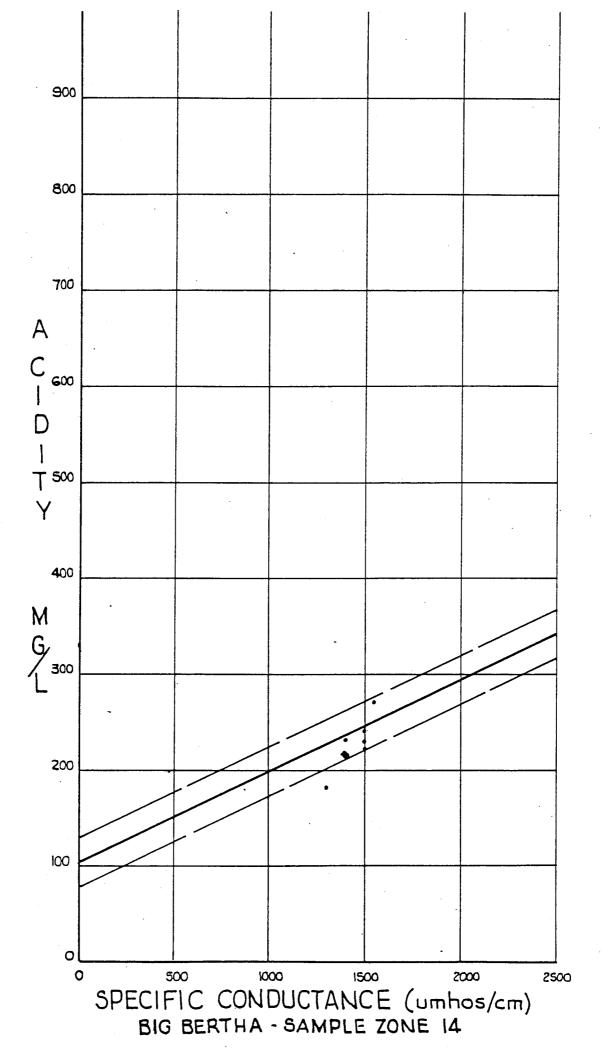
240.7424

240.7424

217.8636

217.8636

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1 NUMBER OF X - Y PAIRS= 7 TOTAL SUMS OF SQUARE= 2229.714286 SUMS OF SQUARES DUE TO REGRESSION= 1233.820346 SUMS OF SQUARES DUE TO DEVIATION= 995.893939 GOODNESS OF FIT= .553354

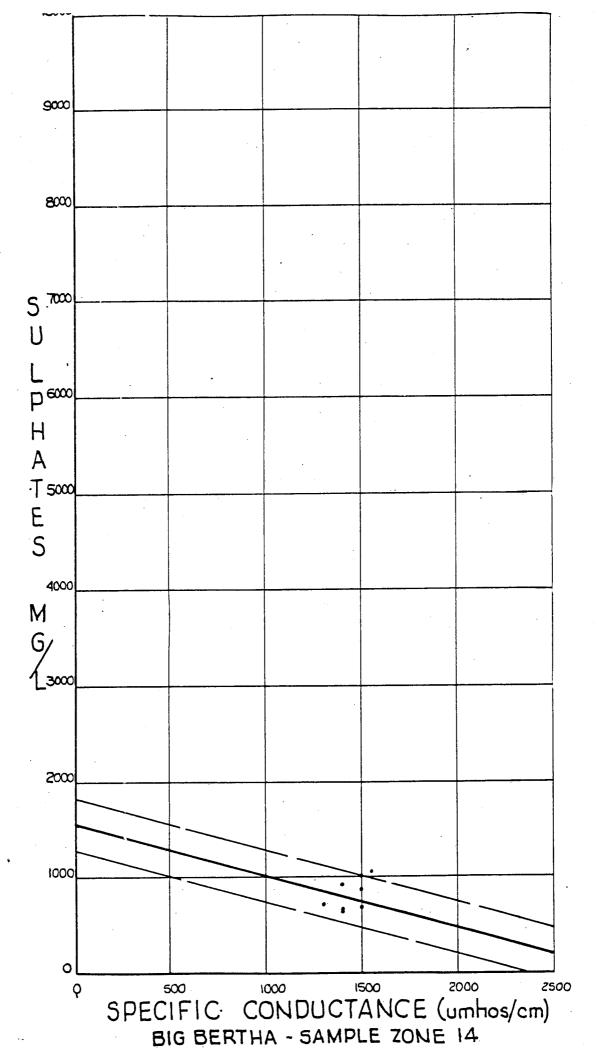

MULTIPLE CORRELATION COEFFICIENT

0.74388

STANDARD DEVIATION 12.883413

	ANALYSIS OF	VARIANCE	
SOURCE OF	SUM OF	DEGREES OF	MEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN. REGRESSION	1233,82	1	1233.82
DEVIATION	995.89	5	199.18
TOTAL VARIATION	2229.71	6	•

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = 6.19 LEVEL .05% - CRITICAL VALUE = 6.61


į	COEFFICIENT MATRIX AND AUG	MENTED MATRIX		
Ì		1025		5819.0000
A STREET	1025	1503250		8558950.0000
į	REGRESSION COEFFICIENTS OF		•	
Total Park	- 1546.18181818180	-		
I	1,62363636363	6 <u>,</u>		
į	ORIGINAL X - Y PAIRS	PREDICTED VALUES	DEVIATION	
I	1500.0000 871.0000	889.2727	18.2727	
i	1400.0000 916.0000	726.9091	189.0909	
İ	1550,0000 1039,0000	970.4545	68.5455	
ĺ	1500.0000 1007.0000	889.2727	117.7273	
İ	1500.0000 387.0000	889.2727	202.2727	
	1400.0000 665.0000	726.9091	61.7091	
ı	1400.0000 634.0000	726:9091	92.9891	

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1
NUMBER OF X - Y PAIRS= 7
TOTAL SUMS OF SQUARE= 170165.428571
SUMS OF SQUARES DUE TO REGRESSION= 62138.883117
SUMS OF SQUARES DUE TO DEVIATION= 108026.545455
GOODNESS OF FIT= .365167
MULTIPLE CORRELATION COEFFICIENT 0.604

STANDARD DEVIATION 134.180566

	ANALISIS UF	AUKTUNCE	
SOURCE OF	SUM OF	DEGREES OF	MEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN, REGRESSION	62138.88	1	62138.88
DEVIATION	108026.55	5	21605.31
TOTAL VARIATION	170165.43	Ä	

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE
F TEST - SIGNIFICANCE OF REGRESSION = 2.88
LEVEL .05% - CRITICAL VALUE = 6.61

1025 1025 1503250

989.0000 1450150.0000

REGRESSION COEFFICIENTS OF NORMAL EQUATION

18.818181818179

	0.0836363636363	5	
ORIGINAL :	X - Y PAIRS	PREDICTED VALUES	DEVIATION
1500.0000	151.0000	144,2727	6.7273
1400.0000	132.0000	135.9091	3.9091
1550.0000	147.0000	148.4545	1.4545
1500.0000	139.0000	144,2727	5.2727
1500,0000	145.0000	144.2727	0.7273
1400.0000	146.0000	135.9091	10:0909
1400.0000	129.0000	135.9091	6.9091

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1 NUMBER OF X - Y PAIRS= 7

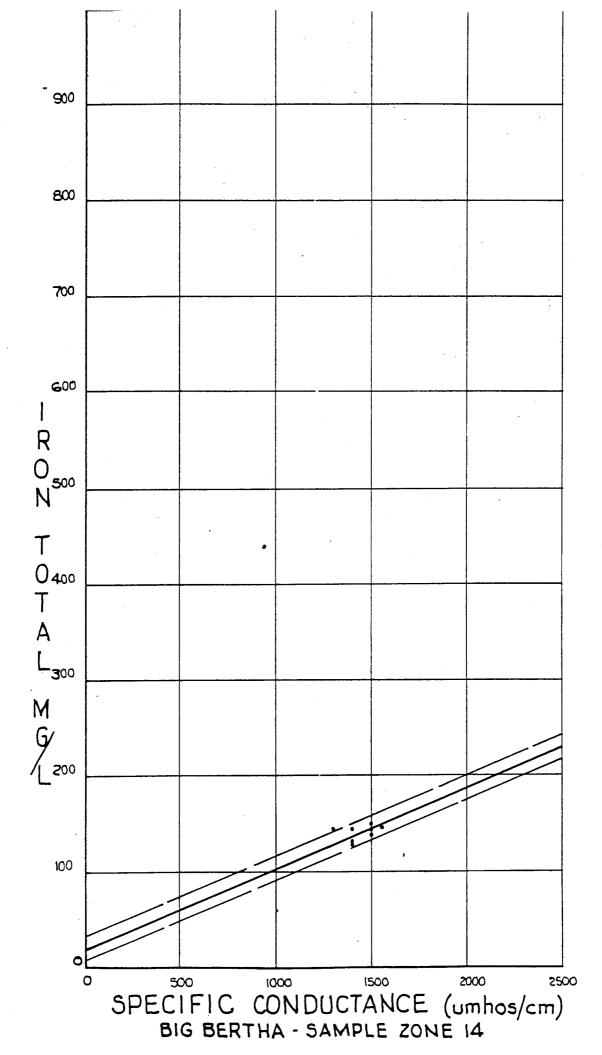
TOTAL SUMS OF SQUARE= 405.428571

SUMS OF SQUARES DUE TO REGRESSION= 164.883117 SUMS OF SQUARES DUE TO DEVIATION= 2+0.545455

GOODNESS OF FIT= .406688

MULTIPLE CORRELATION COEFFICIENT

0.63772


STANDARD DEVIATION 6,331738

ANALYSIS OF VARIANCE

SOURCE OF	SUM OF	DEGREES OF	HEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN. REGRESSION	164.88	1	164.88
DEVIATION	240.55	5	48.11
TOTAL VARIATION	405.43	6	

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = 3.43

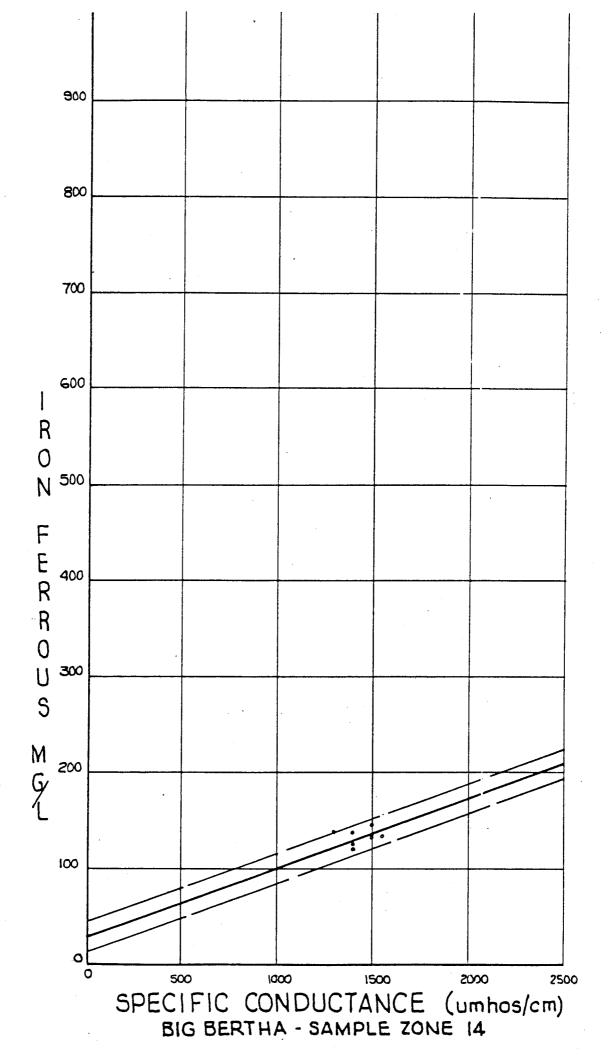
LEVEL .05% - CRITICAL VALUE = 6.61

1400.0000

8.1364

COEFFICIENT MATRIX AND AUGMENTED MATRIX

121.0000


COCFFICIENT MA	IKIX UND UOD	MENIEU MATRIX		
		102	5	936,0000
	1025	150325	Q	1372250.0000
REGRESSION COE	FFICIENTS OF	NORMAL EQUATION		
29	. 43939393938	15		
0	.07121212121	.2 .		
ORIGINAL X -	- Y PAIRS	PREDICTED VALUES	DEVIATION	
1500.0000	146.0000	136,2576	9.7424	
1400.0000	126.0000	129.1364	3,1364	
1550,0000	135.0000	139.8182	4,8182	
1500.0000	136.0000	136.2576	0.2576	
1500.0000	134.0000	136.2576	2.2576	
1400.0000	138.0000	129.1364	8,8636	

129,1364

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1
NUMBER OF X - Y PAIRS= 7
TOTAL SUMS OF SQUARE= 397.428571
SUMS OF SQUARES DUE TO REGRESSION= 119.534632
SUMS OF SQUARES DUE TO DEVIATION= 277.893939
GOODNESS OF FIT= .30077
MULTIPLE CORRELATION COEFFICIENT 0.54843
STANDARD DEVIATION 6.805561

	ANALYSIS OF	VARIANCE	
SOURCE OF	SUM OF	DEGREES OF	MEAN
VARIATION	SQUARES	FREEDOM	SQUARE
LIN. REGRESSION	119.53	1	119.53
DEVIATION	277.89	5	55.58
TOTAL VARIATION	397.43	Ā	,

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = 2.15 LEVEL .05% - CRITICAL VALUE = 6.61

53.0000 77900.0000 1025 1503250

REGRESSION COEFFICIENTS OF NORMAL EQUATION

10.621212121212 0.012424242424

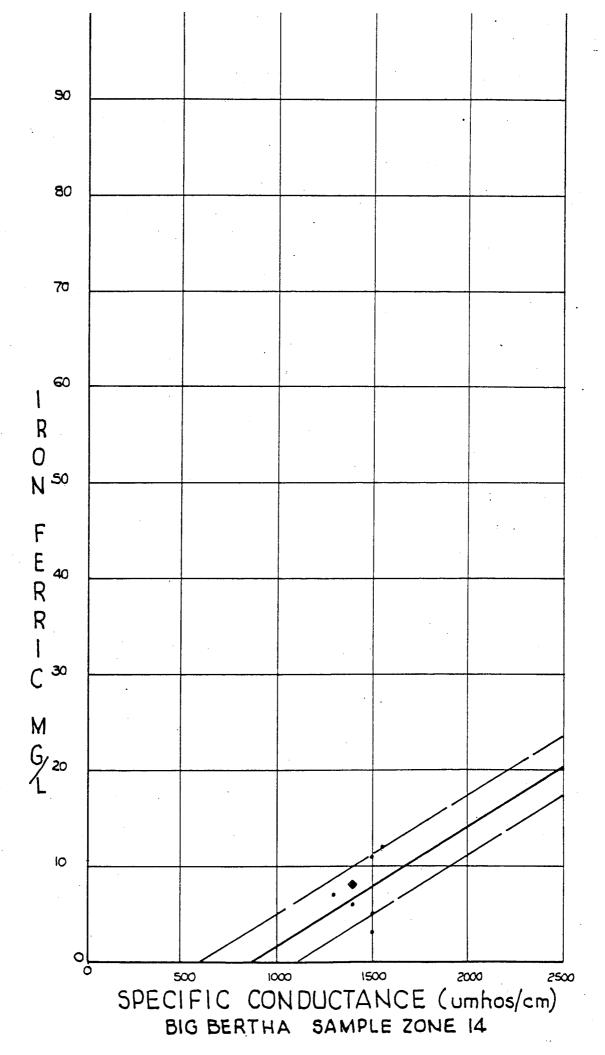
•		T. Control of the con	
ORIGINAL X	- Y PAIRS	PREDICTED VALUES	DEVIATION
1500.0000	5.0000	8.0152	3.0152
1400.0000	4.0000	6.7727	0.7727
1550,0000	12.0000	8.6364	3.3636
1500.0000	3.0000	8.0152	5.0152
1500.0000	11.0000	8.0152	2.9848
1400.0000	8.0000	6.7727	1.2273
1400.0000	8.0000	6.7727	1,2273

STATISTICAL ANALYSIS WITH ORDER OF EQUATION= 1 NUMBER OF X - Y PAIRS= 7

TOTAL SUMS OF SQUARE= 61.714286

SUMS OF SQUARES DUE TO REGRESSION= 3.638528 SUMS OF SQUARES DUE TO DEVIATION= 58.075758 GOODNESS OF FIT= .058958

MULTIPLE CORRELATION COEFFICIENT


0.24281

STANDARD DEVIATION 3,111156

ANALYSIS OF VARIANCE

	SOURCE OF VARIATION	SUM OF SQUARES	DEGREES OF FREEDOM	MEAN SQUARE
LIN.	REGRESSION	3.64	1	3.64
DEVIA	TION	58.08	5	11,62
TOTAL	VARIATION	61.71	. 6	

F-TEST FOR EQUALITY OF SAMPLE/REGRESSION VARIANCE F TEST - SIGNIFICANCE OF REGRESSION = 0 LEVEL .05% - CRITICAL VALUE = 6.61

POST CLOSURE DATABLISTING *

SAMPLE FOURTEEN

FERRIC IRON	. 2	16	9	19	7	∞	6	4
FERROUS	172	152	164	141	171	160	166	164
TOTAL	177	168	170	160	173	168	175	168
SULPHATES	1374	1102	1214	799	. 902	883	928	1187
ACIDITY	322	291	. 273	256	278	292	300	309
ALKALINITY	15	11	18	9	22	6	14	
Hď	5.63	5.43	5,60	5.28	5.68	5.24	5.49	5.72
DISCHARGE	660.	.039	.039	.039	•039	.039	.039	.039
SPEC. COND.	1900	1700	1600	1500	1800	1600	1600	1400
DATE	6/12	91/9	6/21	6/29	7/10	7/26	9/8	8/21

* Units are as follows:

uminos/cm	c.f.s.	standard units	mg/L	
specific conductance -	discharge -	- ind	all others	