SWATARA CREEK MINE DRAINAGE POLLUTION ABATEMENT PROJECT PART TWO OPERATION SCARLIFT

COMMONWEALTH OF PENNSYLVANIA

MILTON J. SHAPP, GOVERNOR DEPARTMENT OF ENVIRONMENTAL RESOURCES MAURICE K. GODDARD. SECRETARY

SL-126-2

BERGER ASSOCIATES, INC. CONSULTING ENGINEERS HARRISBURG, PENNSYLVANIA

BERGER ASSOCIATES, INC. CONSULTING ENGINEERS HARRISBURG, PENNSYLVANIA BERGER ASSOCIATES

ARCHITECTS - ENGINEERS - PLANNERS P. O. BOX 1943, HARRISBURG, PENNSYLVANIA 17105 TELEPHONE (717) 238-9471

December 29, 1972

The Honorable Maurice K. Goddard, Secretary Commonwealth of Pennsylvania Department of Environmental Resources Harrisburg, Pennsylvania 17120

> Re: Engineering Report - Swatara Creek Mine Drainage Pollution Abatement Project, Part Two (Good Spring and Middle Creek) Schuylkill County Project No.SL-126-2

Dear Dr. Goddard:

In accordance with the terms of Agreement No.68-159 we are pleased to submit our Engineering Report for Project SL-126-2 for Good Spring and Middle Creeks in Schuylkill County. The report consists of the results of an acid mine drainage pollution survey, an analysis of these results and recommendations for pollution abatement.

We wish to thank the Department and its staff for their continuous cooperation and to express our appreciation for the opportunity to work with the Department on this challenging program.

Very truly yours,

F. Neywood Mansh

F. Heywood Marsh Senior Vice President

TABLE OF CONTENTS

LETTER OF TRANSMITTAL	
GENERAL SUMMARY OF REPORT	1
RECOMMENDATIONS	8
DEFINITION OF TERMS	16
I. INTRODUCTION A. ACKNOWLEDGMENTS B. STATEMENT OF PROBLEM C. SCOPE OF STUDY D. DESCRIPTION OF PROJECT AREA E. SURVEY PROCEDURES 1. Field 2. Laboratory 3. Other	17 17 18 19 19 20 21 25 26
II. GEOLOGY A. PHYSIOGRAPHY B. TOPOGRAPHY AND DRAINAGE C. STRATIGRAPHY D. STRUCTURE 1. Anticlinal Structures 2. Synclinal Structures 3. Faults 4. Jointing	28 28 29 31 31 32 32 33
 III. MINING A. HISTORY OF DEEP MINING Deep Mining Anthracite Strip Mining B. EXTENT AND CONDITION OF MINE WORKINGS C. COAL PRODUCTION IN STUDY AREA D. UNDERGROUND MINE WATER POOLS E. COAL REFUSE BANKS 	35 36 37 38 39 41 44
IV. HYDROLOGY A. GENERAL B. PRECIPITATION C. EVAPORATION – TRANSPIRATION D. INFILTRATION E. RUNOFF	47 47 48 51 52

TABLE OF CONTENTS (CONTINUED)

F. GROUNDWATER AND ITS MOVEMENT	53
G. STREAM FLOW	54
H. PRESENT CONDITION OF STREAMS IN WATERSHED	56
1. Gebhard Run	57
2. Middle Creek	63
3. Coal Run	65
4. Bailey Run	68
5. Martins Run	69
6. Good Spring Creek	70
I. WATER QUALITY CRITERIA	75
J. WATER PUMPED FROM MINES	77
V. ANALYSIS OF DATA	
A. CHEMICAL CHARACTERISTICS OF WATER	79
B. AMD DISCHARGES	81
1. Deep Mines and Mine Water Pool Overflows	81
2. Strip Mines	81
3. Springs	81
C. SEASONAL EFFECT OF DISCHARGES	82
D. FIELD AND LABORATORY TEST RESULTS	83
VI. ABATEMENT MEASURES	
A. GENERAL APPROACH TO ABATEMENT MEASURES	91
1. General Comments	91
2. Minimizing or Preventing Acid Formation	94
3. Minimizing AMD Entry to Streams	100
4. Treatment of AMD	102
5. Other	103
B. RECOMMENDED ABATEMENT MEASURES	107
<u>Village of Good Spring to I-80 (Plate No. 22)</u>	
1. Good Spring No. 3 Mine Pool Overflow – Tracy	
Airhole (GS-95) – Priority No. 2	107
2. Good Spring No. 1 Mine Pool Overflow (Airhole)	
Secondary Discharge (GS-96) – Priority No.9	111
3. Good Spring Creek Headwaters – Strip Pit	
Overflows (GS-100) Priority No. 19	115
I-81 to Martins Run, Inclusive (Plate No. 25)	
4. Colket Mine Pool Overflow – Colket Water Level	
Tunnel (MR-53) – Priority No. 4	118
5. Westwood Area Strip Pit Overflows (GS-119A)	
Priority No. 5	120

TABLE OF CONTENTS (CONTINUED)

6. Bowman Coleman Water Level Tunnel Discharge	
(GS-92) – Priority A (Quick Start Project)	126
7. I-81 Run off Into Strip Pit (GS-122) – Priority	
B (Potential Quick Start Project)	126
8. Overflowing Strip Pits East of Reading Railroad	
(GS-116, 117, 118) – Priority No 23, 20, 17	128
9. Donaldson Slush Dam Run-Off and Seepage	
(GS-112) – Priority No. 7	130
10. Proving Trench Overflow South of Reading Railroad	
(GS-120) – Priority No. 14	132
11. Overflowing Strip Pits North of Route 125	
(GS-136, 137, 138) – Priority No. 22, 24, 25	132
Martins Run to Middle Creek, Inclusive (Plate No.31)	
12. Middle Creek Mine Pool Overflow – Tracy Overflow	
(C-34) – Priority no. 31	135
13. Rennigner Mine Water Level Tunnel Discharge	
(MC-11) – Priority No. 18	139
Southern Area - Hollenbach Run to Indian Head Slush Dat	
14. Underground Seepage at Hollenbach Run (GS-106)	
Priority No. 8	140
15. Abandoned Fasnacht Drift No. 1 Discharge	
(GS-62) – Priority No. 10	143
16. Abandoned Drift Mine Discharge North of Tremont	
(GS-78,79) – Priorities No. 11, 12	144
17. Indian Head Mine Pool Overflows – Marshalfield	
Slope (C-37) and Marshalfield No. 2 outfall (C-38)	
Priority No. 3	145
Indian Head Refuse Bank to Gebhard Run Inclusive	
18. Seepage at Headwaters of Gebhard Run (G-21)	
Priority No. 21	148
19. Abandoned Slop Mine Discharge (G-23)	
Priority No. 16	148
Northern Area- Middle Creek North of I-81	
20. Overflowing Strip mine- Otto Stripping	
(MC-1) Priority no. 6	150
21. Overflowing Strip Mine – Kocher Stripping	
(MC-2) Priority No. 15	153
22. Lime Neutralization Treatment Facility	154

C. ACTIVE DEEP MINES	158
1. General	158
2. Information on Active Mines	158
3. Escrow Fund	161
4. Individual Treatment vs. Central Plant Treatment	166
D. COST ANALYSIS	166
VII. REFERENCES	167

APPENDIX

	1.	MINE DEVEL	OPMENT AN	D POLLUTION	SOURCE MAP
--	----	------------	-----------	-------------	------------

2. UNDERGROUND MINE WATER POOLS STUDY AREA AND VICINITY

(See Pocket Folder on Back Cover of Report)

LIST OF PLATES

Plate No.	Descritption	Page No.
1	Physiographic Provinces of Eastern PA	30
2.	Generalized Stratigraphic Section	30
3.	Geologic Map	30
4.	Joint Rosettas – Tremont Quadrangle	34
5.	Index of Cross Sections – Coal Beds In Project Area	38
6.	Cross Section – Coal Beds Near Penag No. 1	20
	Water Level Tunnel	38
7.	Cross Section – Coal Beds Near Colket Water	
	Level Tunnel	38
8.	Cross Section – Coal Beds Near No.2 Tunnel	
	Indian Head Colliery	38
9.	Acid Flush-out During And Following Rainfall Of	
	October14 and 15, 1970 – Indian Head Refuse Bank	
	Rock Pile	61
10 - 21	Water Quality Data: Acid/Flow Relationships For	
	Major Sampling Stations	80
22.	Mine Drainage Pollution Abatement Plan	106
23.	Proposed Flume Across Good Spring No. 3 Pool	110
24.	Proposed Flume East of Good Spring	114
25.	Mine Drainage Pollution Abatement Plan	117
26.	Proposed Flume North of Donaldson	119
27.	Proposed Isolation of I-81 Storm Sewer System	
	From AMD	125
28.	Proposed Flume East of Pillar XIX	127
29.	Proposed Dike At Donaldson Slush Dam and	
	Relocated Good Spring Creek	131
30.	Proposed I-81 Ditching Improvements	134
31.	Mine Drainage Pollution Abatement Plan	134
32.	Proposed Middle Creek Lining At Mammoth	
	Stripping	138
33.	Proposed Flume At Martins Run	138
34.	Mine Drainage Abatement Plan	139
35.	Proposed Indian Head Dike and Relocated Gebhard	
	Run	147
36.	Proposed Middle Creek Lining Near Indian Head	
	Slush Dam	147
37.	Proposed Indian Head Slush Dam Improvement	147
38.	Mine Drainage Pollution Abatement Plan	147
39.	Mine Drainage Pollution Abatement Plan	149
40.	Proposed Lime Neutralization Treatment Plant And	
	Acid Mine Discharge Collection System	157
41-58	(Active) Mine Drainage and Sampling Records	159
59	Active Mines Estimated AMD Abatement Costs	165
60-62	Project AMD Abatement Cost Analysis	166