5B. Lower Portion, Main Stream, Two Lick Creek Watershed

a. General

The lower portion of the main stream is located between the breast of the Two Lick Creek Dam and the junction of Blacklick Creek.

Major tributaries discharging into this portion of Two Lick Creek are: Ramsey Run, Stoney Run, Yellow Creek, Tearing Run, and Cherry Run. As previously mentioned, for the purpose of this study, the above tributaries are excluded from this portion of Two Lick Creek and are treated as separate watersheds elsewhere in this section of the report.

The total stream length including all tributaries, except those mentioned above, is approximately 25.5 miles. Total area is approximately 15.5 square miles.

b. Stream Condition

An analysis of mine drainage contamination within the watershed provides the following breakdown on stream condition.

<u>Table 50</u> Stream Condition

Stream Classification	Stream Length Miles	Percent Total Stream Length
Non-Polluted	12.0	48
Severely Polluted	12.5	49
Moderately Polluted	1.0	3

Lower Portion, Main Stream, Two Lick Creek Watershed

Approximately 52 percent of the watershed is seriously degraded by mine drainage pollution. Most of the feeder tributaries are not effected by mine drainage.

Plate <u>51</u> show the locations of sampling stations and the extent of mine drainage pollution within the watershed.

c. Sampling Station Data

Fifteen (15) sampling stations were installed and monitored. The minimums, maximums, and yearly averages of water quality data obtained from these stations are listed in Table 51 on Page 183.

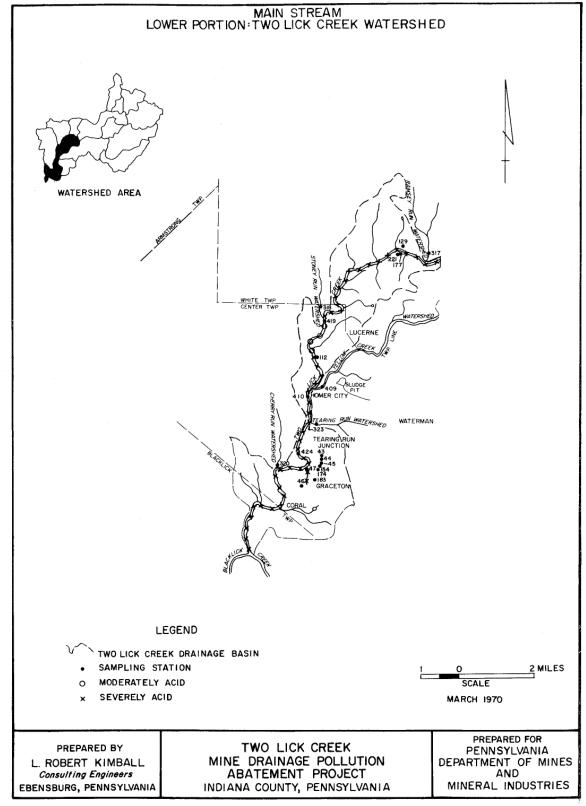


Table 51

Water Quality Data

Lower Portion, Main Stream, Two Lick Creek Watershed

Sampling Station		Plow GPM	pH <u>Range</u>	Acid Load Lbs./Day		dity	Iro Mg./			lfate g./L.
424	Max.	229,695	3.5 - 5.8	53,899	Max.	192	Max.	19	Max.	750
	Min.	13,077			Min.	6	Min.	2	Min.	0
	Ave.	78,564			Ave.	57	Ave.	9	Ave.	311
419	Max.	194,278	4.3 - 6.5	9,841	Max.	100	Max.	4	Max.	875
	Min.	10,732			Min.	4	Min.	1	Min.	46
	Ave.	39,636			Ave.	21	Ave.	2	Ave.	2 53
410	Max.	132,776	3.6 - 5.4	43,683	Max.	420	Max.	35	Max.	1,250
	Min.	10,120			Min.	18	Min.	1	Min.	68
	Ave.	68,157			Ave.	53	Ave.	8	Ave.	2 88
221	Max.	20	3.6 - 4.2	54	Max.	880	Max.	296	Max.	2,500
	Min.	4			Min.	410	Min.	10	Min.	1,250
	Ave.	9			Ave.	503	Ave.	169	Ave.	2,049
183	Max.	20	3.1 - 3.5	70	Max.	1,455	Max.	500	Max.	4,500
	Min.	1			Min.	0	Min.	225	Min.	1,300
	Ave.	5			Ave.	1,156	Ave.	386	Ave.	2,577
177	Max.	12	3.6 - 4.1	18	Max.	550	Max.	17 5	Max.	3,300
	Min.	2			Min.	110	Min.	30	Min.	900
	Ave.	5			Ave.	297	Ave.	108	Ave.	1,536
174	Max.	39	3.3 - 4.4	130	Max.	760	Max.	120	Max.	3,000
	Min.	1			Min.	360	Min.	27	Min.	800
	Ave.	18			Ave.	595	Ave.	68	Ave.	2,125
154	Max.	220	2.8 - 3.8	674	Max.	1,500	Max.	900	Max.	5,000
	Min.	1			Min.	236	Min.	60	Min.	750
	Ave.	64			Ave.	868	Ave.	249	Ave.	1,981

Table 51 Continued

Water Quality Data

Lower Portion, Main Stream, Two Lick Creek Watershed

Sampling Station		low GPM	pH Range	Acid Load Lbs./Day		dity	Ir Mg.	on /L.		lfate g./L.
129	Max. Min. Ave.	745 1 56	3.0 - 4.0	315	Max. Min. Ave.	1,380 320 463	Max. Min. Ave.	450 50 99	Max. Min. Ave.	4,000 200 1,272
112	Max. Min. Ave.	328 61 244	3.4 - 4.7	4,526	Max. Min. Ave.	2,000 680 1,541	Max. Min. Ave.	6,000 1 1,064	Max. Min. Ave.	9,000 1,000 5,541
47	Max. Min. Ave.	1,017 4 139	2.7 - 4.4	1,024	Max. Min. Ave.	946 196 610	Max. Min. Ave.	1,300 3 230	Max. Min. Ave.	2,490 45 1,686
46	Max. Min. Ave.	71 1 15	2.4 - 4.0	130	Max. Min. Ave.	1,500 520 752	Max. Min. Ave.	4 2 5 4 88	Max. Min. Ave.	3,400 375 1,393
45	Max. Min. Ave.	200 3 31	2.6 - 4.9	392	Max. Min. Ave.	1,790 100 1,031	Max. Min. Ave.	570 3 246	Max. Min. Ave.	6,300 450 2,359
44	Max. Min. Ave.	77 3 14	2.7 - 4.2	183	Min.	2,450 710 1,117	Max. Min. Ave.	725 3 271	Max. Min. Ave.	6,250 125 2,611
43	Max. Min. Ave.	95 1 25	3.7 - 4.9	81	Max. Min. Ave.	1,320 100 266	Max. Min. Ave.	400 1 34	Max. Min. Ave.	1,800 12 691

Plate 52 graphically illustrates the monthly relationship between stream flow, contamination load, and weather elements within the watershed based on measurements taken at Sampling Station #424 located near the mouth of Two Lick Creek. It should be noted that the measurements include the pollution load contributed by the upstream major tributaries, but does not include measurements from Cherry Run as this stream enters Two Lick Creek downstream from Sampling Station #424.

Peak flow, pollution load, and pH levels occurred during the spring months with low readings recorded during the late summer and fall.

The pH level fluctuated considerably from a low of 3.7 recorded in September to a high of 5.2 in March.

Two Lick Creek, as measured at Sampling Station #424, discharged an average of approximately <u>113,132,000</u> gallons of water per day into Blacklick Creek during the study period.

d. Coal Mining Activity General

The area was extensively mined from the early 1900's to the late 1960's. Both the Upper Freeport (E) and the Lower Kittanning (B) seams were mined. Map Sheets <u>6</u>, <u>9</u>, <u>10</u>, <u>12</u>, and <u>13</u>, Appendix A show the locations and extent of both deep and strip mines.

Deep Mines

There are presently no deep mines in operation as the last active mine, Lucerne #3-B, ceased operations in 1969.

Abandoned mines in the area are the most extensive of any area within the entire Two Lick Creek Watershed. They include Lucerne Numbers 3-A and 3-B, Graceton Numbers 1, 2, 3, 4, and 5, and Wharton Number 1, all of which have openings within the area.

Table $\underline{52}$ shown on Page $\underline{187}$ lists the abandoned mines and the following information: Type of opening, total number of openings, seam mined, maximum head, whether or not the mine is draining water, and number of acres mined.

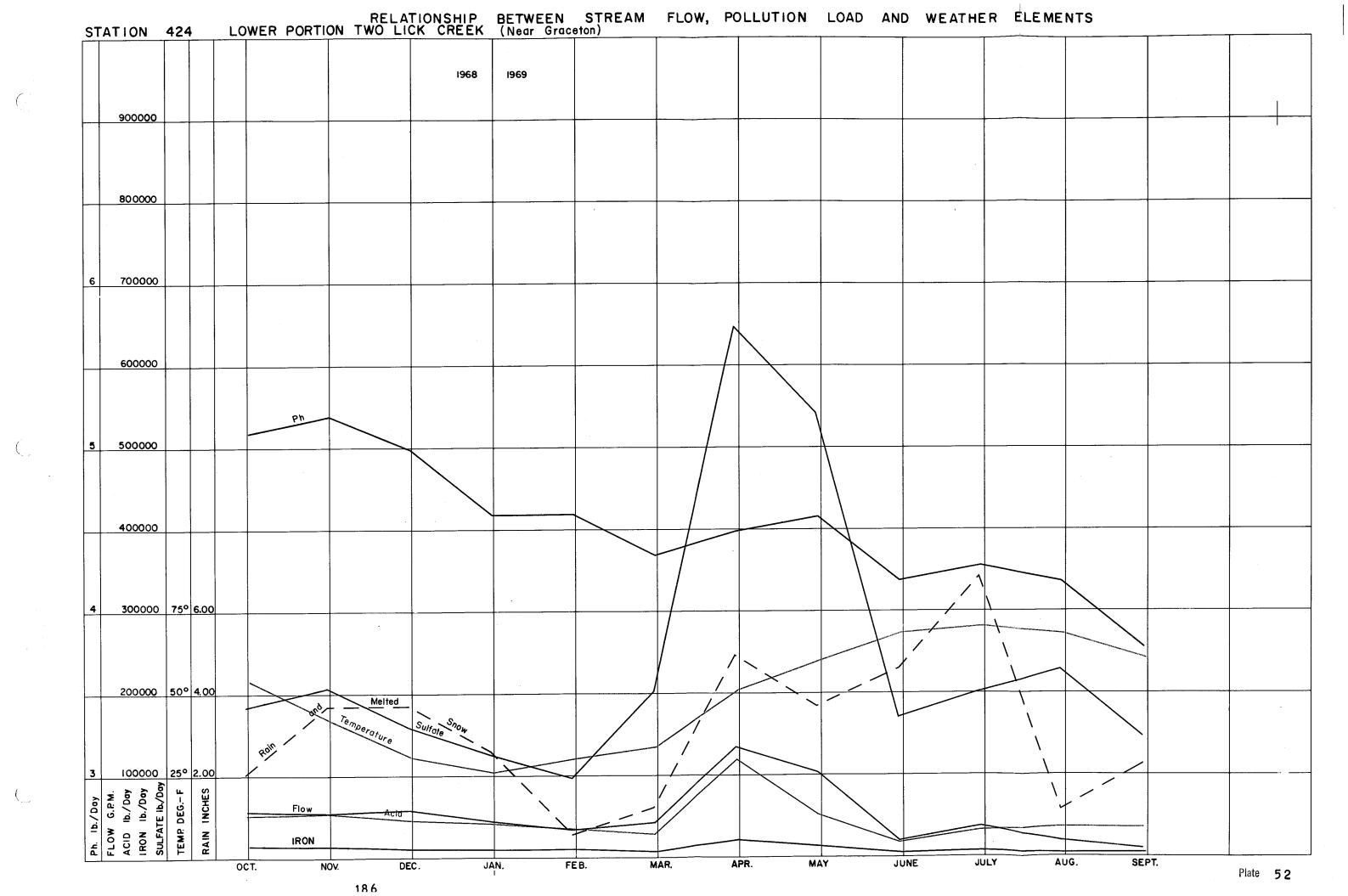


Table <u>52</u>

<u>Abandoned Mines</u>

Lower Portion, Main Stream, Two Lick Creek Watershed

	e of ne	Type of Opening	Seam Mined	Draining Water	Total No. Openings	Area Mined (Acres)	Maximum Head (Feet	<u>)</u>
1.	Lucerne #2*	Churn Drill Holes	E	, X	2	-	719	(591) ¹
2.	Lucerne #3-A	Slope	Е	-	2	756	60	
3.	Lucerne #3-B	Drift	E	x	2	934	164	
4.	Snyder- Waterman Complex**	Fan Shaft	В	х	1	- ·	802	(432) ¹
5.	Campbell	Drift	E	X .	5	99	23	
6.	Graceton #1	Drift	E	X	4.	47	207	
7.	Graceton #2***	Drift	E	X	3	264	280	
8.	Graceton #3***	Slope	E	X	2	2,310	253	
9.	Graceton #4	Drift	E	X	1	31	211	
10.	Graceton #5	Drift	E	X	1	29	233	
11.	Wharton #1	Slope	E	-	2	202	-	
12.	Barrish	Drift	E	-	3	11	20	
13.	R. E. Young	Drift	E	-	1	2	20	

^{*}Lucerne #2 has its main drift entries in Lower Yellow Creek Watershed and additional entries in the Tearing Run Watershed.

^{**}The Snyder-Waterman complex has its main entries in Tearing Run Watershed and additional entries in Lower Yellow Creek Watershed.

^{***}Graceton #2 has several additional entries in the Tearing Run Watershed.

^{****}Graceton #3 is partially flooded and is discharging mine drainage at a bore hole located in the Cherry Run Watershed. The drainage indicated above is from a small portion of the mine located above the main entry. 1 Indicates head at surface elevations.

Strip Mines

There are several small strip mines totaling approximately 117 acres located near Graceton, Coral, and the Two Lick Creek Dam.

The Upper Freeport (E) seam, only, was mined principally in the outcrop of the Graceton deep mine complex.

There are presently no strip mines in operation.

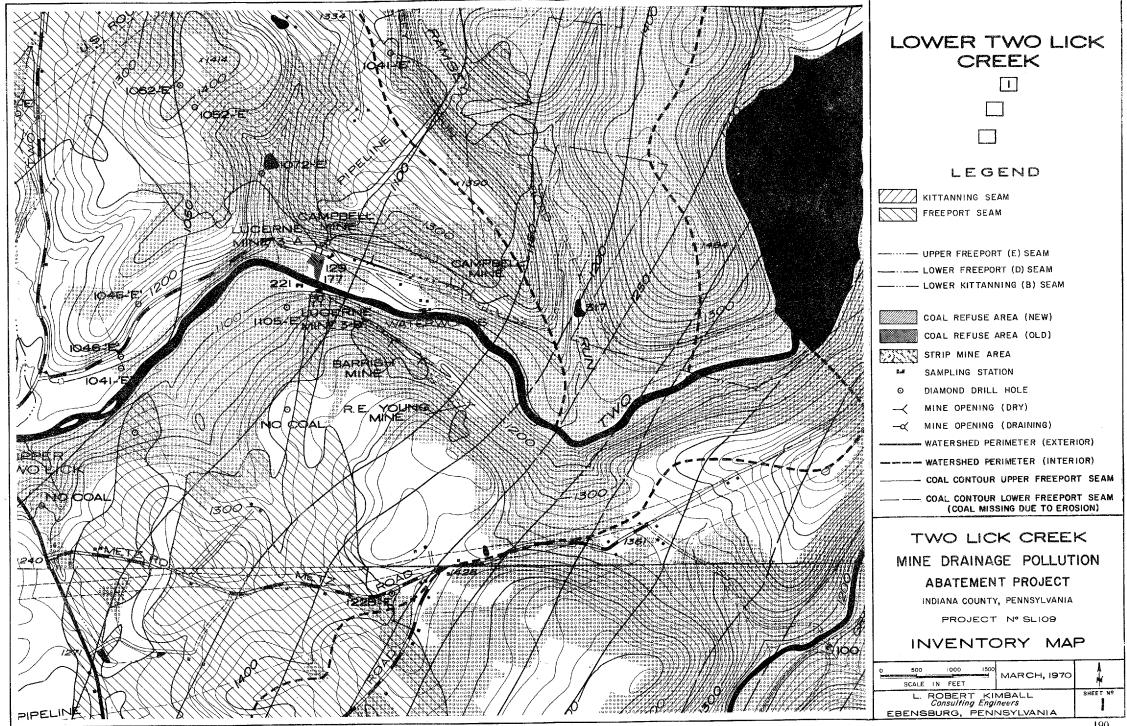
Several strips broke into or cut close to old deep mine workings, and as a result, water from the old workings is draining over and through the stripped areas.

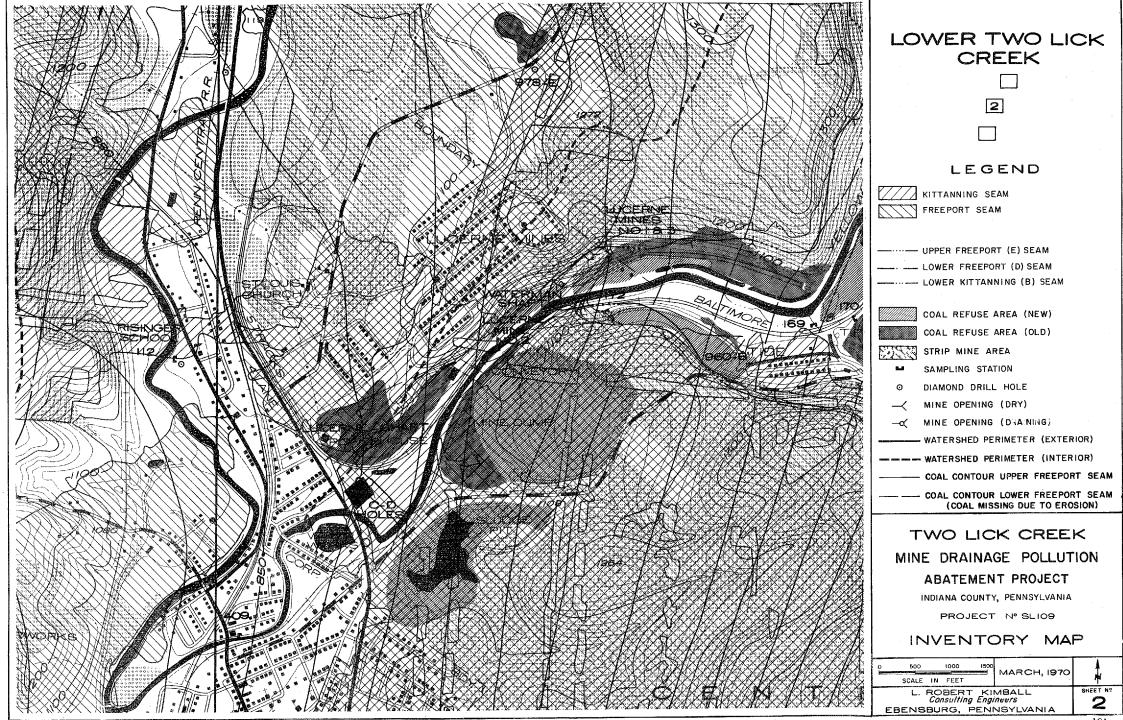
The majority of the strips were at least partially backfilled, however, several of these are inadequately revegetated.

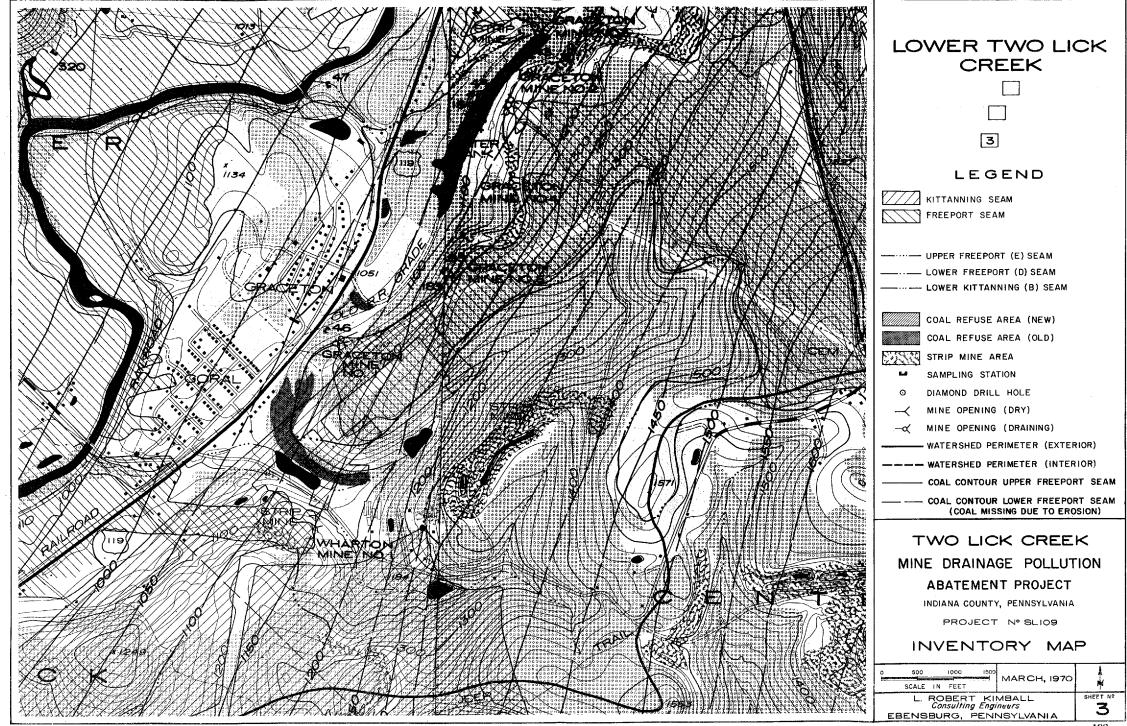
e. Description of Mine Drainage Sources

The major mine drainage sources are listed on the following page in Table $\underline{53}$ beginning with the most serious contributor of acid load. Each source is associated with the sampling station(s) measuring the mine drainage and the respective contamination load.

Deep mines that are interconnected are listed collectively as one source. Plates 53, 54, and 55 show the locations of the various sources.


Combined maximum heads are given for deep mines that are discharging mine drainage.


Table 53


Major Mine Drainage Sources

Lower Portion, Main Stream, Two Lick Creek Watershed

Source Description		Flow GPM	Sampling Station(s)	Pollut <u>Acid</u>	ion Load - Iron	Lbs./Day Sulfate	Combined Maximum Head (Feet)	
1.	Snyder-Waterman Fan Shaft	244	112	4,526	3 ,12 5	16,278	432	
2.	Graceton #1, #2, #4, and #5 Mines	147	44, 45, 46, 154, 1 7 4, 183	1,588	386	3,742	280	
3.	Campbell Mine	56	129	315	68	865	23	
4.	Graceton #2, #3, #4, and #5 Coal Refuse Piles	1,225	Estimated	300	10	2,000	_	
5.	Lucerne 3-B Mine	14	177, 221	72	2 5	312	164	
6.	Graceton Strip Mines	416	Estimated	50	5	400	-	
7.	Lucerne #3 Coal Refuse	20 8	Estimated	50	5	400	-	
8.	Graceton #1 and Wharton #1 Coal Refuse Piles	2 08	Estimated	50	5	400	-	

f. Recommended Abatement Procedures - Cost Benefication

Recommended abatement treatments and related costs are listed for the various sources of pollution in Table 54.

All treatments and costs are based on data described in Section X.

A key to define the recommended abatement procedures is shown on Page 196.

Two abatement plans, a primary and alternate, are recommended for rehabilitation of the watershed.

Plan A is recommended as the primary plan and Plan B as the alternate.

An estimated effectiveness of 75% reduction of pollution load is assigned for each recommended treatment in both plans.*

Plan A is based on an arbitrary maximum cost of \$1,000.00 per pound of acid load abated and will provide an estimated reduction of acid load in the magnitude of 82% for the watershed.

Plan B is based on an arbitrary cost of \$400.00 per pound of acid load abated and will provide an estimated reduction of acid load of approximately 78% for the watershed.

Table <u>54a</u> lists the sources to be abated, the amount of benefication, and costs associated with both plans.

*With the exception of treatment plants which are assigned an effectiveness of 100% reduction of pollution load.

Table 54

Recommended Abatement Procedures - Cost Benefication

Lower Portion, Main Stream, Two Lick Creek Watershed

Sou	rce Name	Pollution Order	Recommended Treatment Procedures	Total Cost \$	Cost Per Pound \$	Total Abatement Lbs. Acid/Day
1.	Graceton Strip Mine	6	31A - R3	\$ 1,705	\$ 45.47	37
2.	Snyder-Waterman Fan Shaft Graceton #1, #2, #4,	1	Plant	655,817	144.90	4,526
	and #5 Mines	2	Plant	230,116	144.90	1,588
3.	Campbell Mine	3	6 Seals	66,000	279.31	236
4.	Lucerne #3-B Mine	5	2 Seals	22,000	407.41	54
5.	Graceton #2, #3, #4, and #5 Refuse Piles	4	15A - RP	110,880	4 92. 80	225
6.	Lucerne #3 Refuse Pile	7	13A - RP	96,096	2,562.56	37
7.	Graceton #1 Refuse Pile	8	13A - RP	96,096	2,562.56	37
	Total all Sources			\$1,278,710		6,740

Table <u>54a</u>

Benefication - Recommended Plans

Lower Portion, Main Stream, Two Lick Creek Watershed

Plan	Above Sources Abated	Benefication Pollution Reduction Acid Lbs./Day - % of Total	Benefication Pollution Reduction Iron Lbs./Day - % of Total	Benefication Pollution Reduction Sulfate Lbs./Day - % of Total	Total Cost
A	1 - 5	6,667 - 96%	3,592 - 99%	22,703 - 93%	\$1,086,518
B	1 - 3	6,388 - 92%	3,566 - 98%	20,969 - 86%	953,638

KEY TO RECOMMENDED ABATEMENT PROCEDURES

- R1 Grass and legumes Method #1
 - R2 Grass and Legumes Method #2
 - R3 Seedlings
 - F Flumes
 - D Ditching
 - B Terrace Backfill
 - A Acreage on strip mines and refuse piles
 - RP Standard Refuse Pile Reclamation
 - RB Refuse Burial and Reclamation
 - SC Soil Cover
- Plant Treatment Plant
- Pond Pond Construction and Reclamation
- Seal Mine Seal