## 2. Buck Run Watershed

## a. General

Buck Run originates north of the village of Buck Run and the stream flows in a southerly direction for approximately 3.5 miles where it discharges into Two Lick Creek Proper near Clymer.

Total stream length including all tributaries is approximately 5.5 miles. The total area of the watershed is approximately 3.5 square miles.

### b. Stream Condition

An analysis of mine drainage contamination within the watershed provides the following breakdown on stream condition.

Table 30

## Stream Condition

### Buck Run Watershed

| Stream<br>Classification | Stream Length<br>Miles | Percent Total<br>Stream Length |
|--------------------------|------------------------|--------------------------------|
| Non-Polluted             | 2.3                    | 42                             |
| Severely Polluted        | 2.0                    | 36                             |
| Moderately Polluted      | 1.2                    | 12                             |

Approximately 48 percent of the Buck Run Watershed is seriously degraded by mine drainage.

Plate <u>27</u> shows the location of sampling stations and the extent of spine drainage pollution within the various portions of the watershed.

## c. Sampling Station Data

Twenty-two (22) sampling stations were installed and monitored. The minimums, maximums, and yearly averages of water quality data obtained from these stations are listed in Table 31 on Page 110.

Plate <u>28</u> graphically illustrates the monthly relationship between stream flow, pollution load, and weather elements within the watershed based on measurements taken at Sampling Station #314 located at the mouth of Buck Run.

Flow, pH levels, and pollution loads coincided throughout the study period with peaks occurring from December through April and lows during the fall.

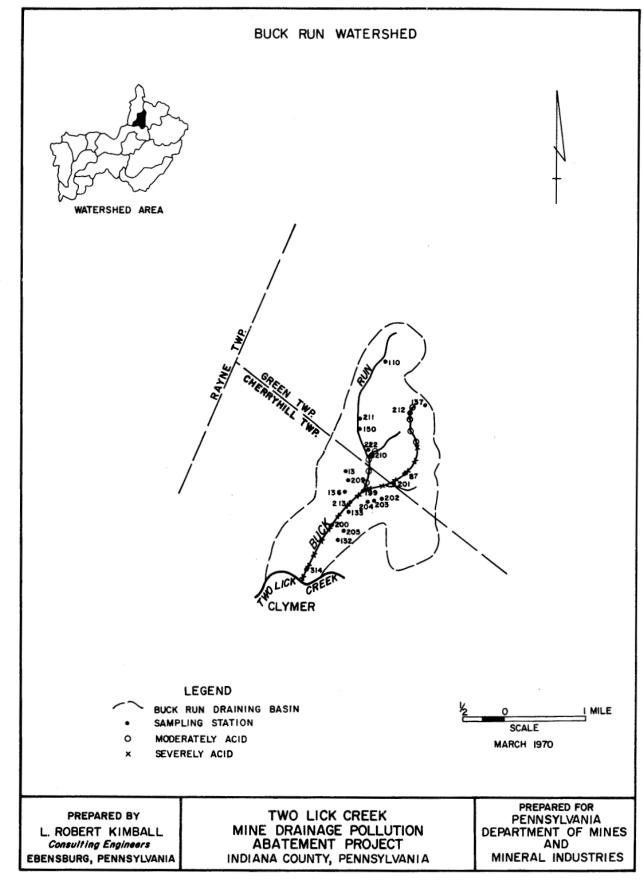



Table 31
Water Quality Data
Buck Run Watershed

|     | Sampling<br>Station |                      | low<br>GPM           | pH<br>Range | Acid Load<br>Lbs./Day | Acid<br>Mg.          | •                   | Iro<br>Mg./          |                           |                              | lfate<br>./L.              |
|-----|---------------------|----------------------|----------------------|-------------|-----------------------|----------------------|---------------------|----------------------|---------------------------|------------------------------|----------------------------|
|     | 314                 | Max.<br>Min.<br>Ave. | 5,130<br>71<br>1,175 | 2.6 - 4.9   | 7,777                 | Max.<br>Min.<br>Ave. | 1,580<br>4<br>549   | Max.<br>Min.<br>Ave, | 631<br>0<br>188           | Max.<br>Min.<br>Ave.         | 3,000<br>0<br>1,283        |
|     | 222                 | Max.<br>Min.<br>Ave. | 7<br>1<br>1          | 3.9 - 4.8   | 8                     | Max.<br>Min.<br>Ave. | 290<br>104<br>143   | Max.<br>Min.<br>Ave. | 2<br>1<br>1               | Max.<br>Min.<br>Ave.         | 875<br>400<br>618          |
|     | <b>21</b> 3         | Max.<br>Min.<br>Ave. | 1,530<br>137<br>768  | 3.9 - 5.1   | 1,094                 | Max.<br>Min.<br>Ave. | 180<br>60<br>118    | Max.<br>Min.<br>Ave. | 25<br>6<br>13             | Max.<br>Min.<br><b>Av</b> e. | 900<br>400<br>713          |
| 110 | 212                 | Max.<br>Min.<br>Ave. | 108<br>3<br>24       | 3.8 - 5.3   | 18                    | Max.<br>Min.<br>Ave. | 100<br>8<br>64      | Max.<br>Min.<br>Ave. | 10<br>1<br>4              | Max.<br>Min.<br>Ave.         | 961<br>360<br>726          |
|     | 211                 | Max.<br>Min.<br>Ave. | 23<br>1<br>5         | 3.3 - 4.0   | 33                    | Max.<br>Min.<br>Ave. | 2,000<br>184<br>539 | Max.<br>Min.<br>Ave. | 8 <b>2</b> 5<br>40<br>198 | Max.<br>Min.<br>Ave.         | 6,000<br>625<br>1,543      |
|     | 210                 | Max.<br>Min.<br>Ave. | 21<br>2<br>7         | 3.8 - 4.7   | 5                     | Max.<br>Min.<br>Ave. | 76<br>44<br>60      | Max.<br>Min.<br>Ave. | 1<br>0.3<br>1             | Max.<br>Min.<br>Ave.         | 812<br>330<br>633          |
|     | 209                 | Max.<br>Min.<br>Ave. | 6<br>1<br>2          | 3.9 - 4.5   | 2                     | Max.<br>Min.<br>Ave. | 98<br>47<br>63      | Max.<br>Min.<br>Ave. | 5<br>1<br>4               | Max.<br>Min.<br><b>A</b> ve. | 900<br>400<br>5 <b>2</b> 9 |
|     | 205                 | Max.<br>Min.<br>Ave. | 61<br>1<br>5         | 3.2 - 3.9   | 45                    | Max.<br>Min.<br>Ave. | 1,680<br>412<br>686 | Max.<br>Min.<br>Ave. | 180<br>52<br>94           | Max.<br>Min.<br>Ave.         | 4,500<br>1,000<br>2,819    |

Table 31 Continued


# Water Quality Data

|     | ampling<br>Station |      | low<br>GPM  | pH<br>Range | Acid Load<br>Lbs./Day | Acid<br>Mg./ | •           | Iron<br>Mg./ |     | Sulf<br>Mg. |       |
|-----|--------------------|------|-------------|-------------|-----------------------|--------------|-------------|--------------|-----|-------------|-------|
|     | 204                | Max. | 7           | 3.3 - 4.5   | 8                     | Max.         | 380         | Max.         | 21  | Max.        | 1,600 |
|     |                    | Min. | 1           |             |                       | Min.         | 100         | Min.         | 5   | Min.        | 105   |
|     |                    | Ave. | 3           |             |                       | Ave.         | 232         | Ave.         | 14  | Ave.        | 721   |
|     | 203                | Max. | 8           | 3.4 - 4.7   | 7                     | Max.         | 460         | Max.         | 50  |             | 1,500 |
|     |                    | Min. | 1           |             |                       | Min.         | 156         | Min.         | 14  | Min.        | 700   |
|     |                    | Ave. | 2           |             |                       | Ave.         | 356         | Ave.         | 29  | Ave.        | 1,424 |
|     | 202                | Max. | 14          | 3.5 - 4.7   | 10                    | Max.         | 300         | Max.         | 11  |             | 1,010 |
|     |                    | Min. | 2           |             |                       | Min.         | 98          | Min.         | 4   | Min.        | 400   |
|     |                    | Ave. | 5           |             |                       | Ave.         | 157         | Ave.         | 8   | Ave.        | 613   |
| 111 | 201                | Max. | 39          | 3.5 - 5.0   | , <b>9</b>            | Max.         | 120         | Max.         | 11  |             | 1,200 |
|     |                    | Min. | 4           |             |                       | Min.         | 22          | Min.         | 1   | Min.        | 400   |
|     |                    | Ave. | 14          |             |                       | Ave.         | 51          | Ave.         | 3   | Ave.        | 697   |
|     | 200                | Max. | 3,910       | 3.4 - 4.3   | 5,794                 | Max.         | 1,490       | Max.         | 750 |             | 3,880 |
|     |                    | Min. | 139         |             |                       | Min.         | 256         | Min.         | 6   | Min.        | 750   |
|     |                    | Ave. | 840         |             |                       | Ave.         | 5 <b>72</b> | Ave.         | 176 | Ave.        | 1,536 |
|     | 199                | Max. | 3,748       | 4.0 - 5.2   | 384                   | Max.         | 76          | Max.         | 4   |             | 1,000 |
|     |                    | Min. | 111         |             |                       | Min.         | 30          | Min.         | 1   | Min.        | 400   |
|     |                    | Ave. | <b>7</b> 58 |             |                       | Ave.         | 42          | Ave.         | 1   | Ave.        | 557   |
|     | 150                | Max. | 2,065       | 4.4 - 5.8   | 26                    | Max.         | 42          | Max.         | 9   | Max.        | 517   |
|     |                    | Min. | 31          |             |                       | Min.         | 1           | Min.         | 0.1 | Min.        | 175   |
|     |                    | Ave. | 341         |             |                       | Ave.         | 6           | Ave.         | 0.5 | Ave.        | 271   |
|     | 137                | Max. | 71          | 3.3 - 4.4   | 34                    | Max.         | 550         | Max.         | 84  |             | 2,000 |
|     |                    | Min. | .1          |             |                       | Min.         | 60          | Min.         | 12  | Min.        | 65    |
|     |                    | Ave. | 17          |             |                       | Ave.         | 165         | Ave.         | 31  | Ave.        | 628   |

Table 31 Continued

# Water Quality Data

| Sampling<br>Station |      | ow<br>PM | pH<br>Range | Acid Load<br>Lbs./Day | Acidi<br>Mg./ | •           | Iro<br>Mg./ |        |      | lfate<br>g./L. |
|---------------------|------|----------|-------------|-----------------------|---------------|-------------|-------------|--------|------|----------------|
| 136                 | Max. | 190      | 3.1 - 4.2   | 6,260                 | Max.          | 37,800      | Max.        | 21,000 | Max. | 67,400         |
|                     | Min. | 4        |             |                       | Min.          | 850         | Min.        | 1,000  | Min. | 1,375          |
|                     | Ave. | 53       |             |                       | Ave.          | 9,757       | Ave.        | 4,073  | Ave. | 13,208         |
| 133                 | Max. | 101      | 3.6 - 4.7   | 86                    | Max.          | 228         | Max.        | 7      | Max. | 1,500          |
|                     | Min. | 26       |             |                       | Min.          | 100         | Min.        | 2      | Min. | 450            |
|                     | Ave. | 44       |             |                       | Ave.          | 162         | Ave.        | 6      | Ave. | 943            |
| 132                 | Max. | 88       | 3.2 - 4.2   | 299                   | Max.          | 1,000       | Max.        | 680    | Max. | 6,250          |
|                     | Min. | 16       |             |                       | Min.          | 154         | Min.        | 1      | Min. | 750            |
|                     | Ave. | 35       |             |                       | Ave.          | <b>7</b> 50 | Ave.        | 224    | Ave. | 2,699          |
| 110                 | Max. | 26       | 3.8 - 6.4   | 3                     | Max.          | 64          | Max.        | 50     | Max. | 2,400          |
|                     | Min. | 1        |             |                       | Min.          | 4           | Min.        | 1      | Min. | 200            |
|                     | Ave. | 6        |             |                       | Ave.          | 40          | Ave.        | 1      | Ave. | 511            |
| 87                  | Max. | 200      | 3.3 - 4.5   | 65                    | Max.          | 244         | Max.        | 90     | Max. | 2,000          |
|                     | Min. | 8        |             |                       | Min.          | 54          | Min.        | 1      | Min. | 312            |
|                     | Ave. | 40       |             |                       | Ave.          | 153         | Ave.        | 12     | Ave. | 1,180          |
| 13                  | Max. | 20       | 3.7 - 4.7   | 5                     | Max.          | 166         | Max.        | 15     | Max. | 2,100          |
|                     | Min. | 1        |             |                       | Min.          | 34          | Min.        | 1      | Min. | 350            |
|                     | Ave. | 4        |             |                       | Ave.          | 109         | Ave.        | 8      | Ave. | 1,375          |



The acid load concentration remained fairly constant. This probably accounts for the low pH's that occurred during periods of low flow.

Buck Run contributed the following percentages of flow and pollution load to the total flow and load of Two Lick Creek as measured at Sampling Station #416 at Clymer: Flow - 7%; Acidity - 65%; Iron - 51%; and, Sulfate - 25%.

Buck Run discharged approximately <u>1,692,000</u> gallons of water per day into Two Lick Creek during the study period.

## d. Coal Mining Activity

## <u>General</u>

The area was extensively mined from 1910 to the 1950's. Map Sheet # 3, Appendix A shows the location and extent of both deep and strip mines.

## **Deep Mines**

4. Capizzi

There are no deep mines presently in operation. The last active mine, the Imperial Coal Company's Keystone Mine, ceased operations in the 1950's.

The majority of the abandoned mines were worked in the World War I era.

Table <u>32</u> below lists the abandoned mines in the watershed. The following information is also listed: Type of opening, total number of openings, seam mined, maximum head, whether or not the mine is draining water, and number of acres mined.

Table 32
Abandoned Mines

Buck Run Watershed

| Name of<br>Mine |                    | Type of<br>Opening | Seam<br>Mined | Draining<br>Water | Total No.<br>Openings | Area Mined (Acres) | Maximum<br>Head (Feet) |
|-----------------|--------------------|--------------------|---------------|-------------------|-----------------------|--------------------|------------------------|
| 1.              | Rodkey             | Drift              | В             | x                 | 12                    | 221                | 40                     |
| 2.              | McKean             | Drift              | В             | x                 | 4                     | 212                | 76                     |
| 3.              | Pontani<br>(H & J) | Drift              | D             | X                 | 2                     | 81                 | 45                     |

Drift D

X

112

12

### Table 32 Continued

## Abandoned Mines

## Buck Run Watershed

| Name of<br>Mine |                      | Type of<br>Opening | Seam<br>Mined | Draining<br>Water | Total No.<br>Openings | Area Mined<br>(Acres) | Maximum<br>Head (Feet) |
|-----------------|----------------------|--------------------|---------------|-------------------|-----------------------|-----------------------|------------------------|
| 5.              | A. K. Wright         | Drift              | В             | x                 | 3                     | 83                    | 13                     |
| 6.              | Widdowson            | Drift              | D             | x                 | 2                     | 147                   | 5                      |
| 7.              | Imperial<br>Keystone | Drift*             | В             | -                 | 4                     | 676                   | -                      |
| 8.              | Victor #29**         | Drift              | В             | x                 | 4                     | 99                    | -                      |

<sup>\*</sup>Utilized Victor #29 main entries and headings. Workings located beneath the Dixon Run and Crooked Creek Watersheds. No mine drainage discharge.

In addition to the above mines, several small country mines were sporadically operated over the years. Both the Lower Kittanning (B) and Lower Freeport (D) seams were mined. Seven of the mines are draining water. These sources are further described in Paragraph e.

#### Strip Mines

Strip mining activity reached its peak in the early 1950's. There are presently no active strips in the basin.

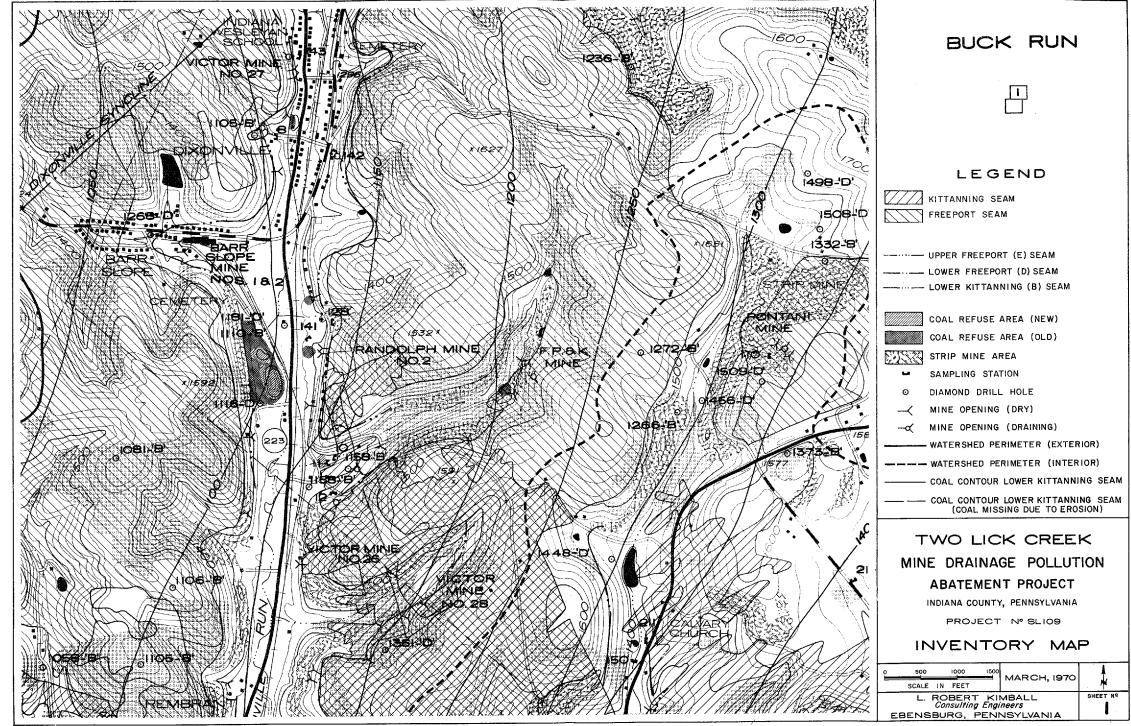
Approximately 344 acres have been stripped. Most of the strip cuts were relatively shallow. This is particularly true of the coal mined in the Lower Freeport (D) seam where highwalls average about 15 feet. Consequently, very little overburden was disturbed. For this reason and because backfilling and revegetation was practiced, in most cases, strip mines are only minor sources of mine drainage in the basin.

There are several instances, however, where strip mining operations broke into or cut close to abandoned deep mine workings. Water from these old workings is draining into the strip cuts and over or through the strip spoil increasing the contamination of the water.

<sup>\*\*</sup>Indicates drainage toward and discharging into Dixon Run Watershed.

## e. Description of Mine Drainage Sources

The major mine drainage sources are listed on the following page in Table  $\underline{33}$  beginning with the most serious contributor of acid load. Each source is associated with the sampling station(s) measuring the mine drainage and the respective contamination load.


Deep mines that are interconnected are listed collectively as one source. Plates 29 and 30 shows the locations of the various sources.

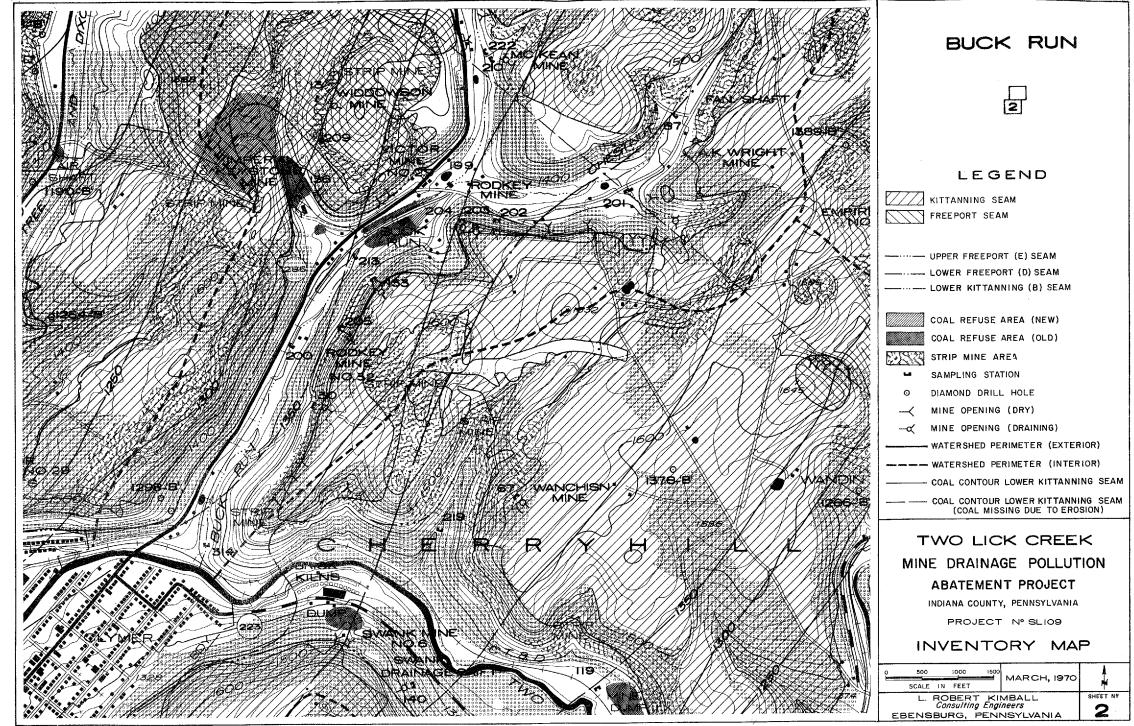

Combined maximum heads are given for deep mines that are discharging mine drainage.

Table 33

Major Mine Drainage Sources

|     | Source<br>cription                               | Flow<br>GPM | Sampling Station(s)                            | Pollut<br><u>Acid</u> | ion Load -<br>Iron | Lbs./Day<br>Sulfate | Combined Maximum Head (Feet) |
|-----|--------------------------------------------------|-------------|------------------------------------------------|-----------------------|--------------------|---------------------|------------------------------|
| 1.  | Imperial Keystone<br>Coal Refuse Pile            | 53          | 136                                            | 6,260                 | 2,613              | 8,474               | -                            |
| 2.  | Coal Tipple<br>Coal Refuse Pile                  | 10          | 213<br>(minus 199)                             | 710                   | 109                | 1,519               | -                            |
| 3.  | A. K. Wright Deep<br>Mine and two strip<br>mines | 26          | 87<br>(minus 212)                              | 282                   | 5                  | 486                 | 13                           |
| 4.  | Rodkey Mine                                      | 110         | 132, 133,<br>201, 202,<br>203, 204,<br>and 205 | 206                   | 92                 | 1,901               | 40                           |
| 5.  | Rodkey (B) Seam<br>Strip Mine                    | <b>27</b> 5 | Estimated                                      | 66                    | _                  | -                   | ••                           |
| 6.  | Capizzi Mine                                     | 17          | 137                                            | 34                    | 6                  | 129                 | 12                           |
| 7.  | Small Refuse Pile                                | 341         | 150                                            | 26                    | -                  | 39                  |                              |
| 8.  | McKean Mine                                      | 7           | 222, 210                                       | 13                    | -                  | 89                  | 76                           |
| 9.  | Victor #29 Mine                                  | 58          | Estimated                                      | 7                     | 1                  | 85                  | -                            |
| 10. | Widdowson Mine and<br>Strip Mine                 | 6           | 13, 209                                        | 7                     | 1                  | 81                  | 5                            |
| 11. | Pontani Mine                                     | 6           | 110                                            | 3                     | -                  | 34                  | 45                           |





## f. Recommended Abatement Procedures - Cost Benefication

Recommended abatement treatments and related costs are listed for the various sources in Table 34. All treatments and costs are based on data described in Section X. A key to define the recommended abatement procedures is shown on Page 123. Two abatement plans, a primary and alternate, are recommended for rehabilitation of the watershed.

Plan A is recommended as the primary plan and Plan B as the alternate. An estimated effectiveness of 75% reduction of pollution load is assigned for each recommended treatment in both plans.\*

Plan A is based on an arbitrary maximum cost of \$1,000.00 per pound of acid load abated and will provide an estimated reduction of acid load in the magnitude of 82% for the watershed.

Plan B is based on an arbitrary cost of \$400.00 per pound of acid load abated and will provide an estimated reduction of acid load of approximately 78% for the watershed.

Table 34a lists the sources to be abated, the amount of benefication, and costs associated with both plans.

\*With the exception of treatment plants which are assigned an effectiveness of 100% reduction of pollution load.

Table 34

Recommended Abatement Procedures - Cost Benefication

| Sou | rce Name                            | Pollution<br>Order | Recommended<br>Treatment<br>Procedures | Total<br>Cost \$ | Cost Per<br>Pound \$ | Total Abatement Lbs. Acid/Day |
|-----|-------------------------------------|--------------------|----------------------------------------|------------------|----------------------|-------------------------------|
| 1.  | Rodkey (B) Seam<br>Strip Mine       | 5                  | 5A - R3 - F                            | \$ 668           | <b>\$</b> 13.23      | 5 <b>2</b>                    |
| 2.  | Imperial Keystone<br>Refuse Pile    | 1                  | 19A - RP                               | 140,448          | 29.92                | 4,695                         |
| 3.  | Coal Tipple Refuse<br>Pile          | 2                  | 5A - RB                                | 52,470           | 98.55                | 532                           |
| 4.  | Small Refuse Pile                   | 7                  | 1A - RP                                | 7,392            | 381.03               | 19                            |
| 5.  | A. K. Wright Deep<br>and Strip Mine | 3                  | 3 Seals<br>27A - R2 - F - B            | 165,165          | 780.55               | 212                           |
| 6.  | Rodkey Mine                         | 4                  | 12 Seals                               | 132,000          | 853.82               | 155                           |
| 7.  | Capizzi Mine                        | 6                  | 2 Seals                                | 22,000           | 862.75               | 25                            |
| 8.  | Victor #29 Strip Mine               | 9                  | 32A - R2                               | 11,440           | 2,158.49             | 5                             |
| 9.  | Widdowson Mine                      | 10                 | 2 Seals                                | 22,000           | 4,150.94             | 5                             |
| 10. | McKean Mine                         | 8                  | 4 Seals                                | 44,000           | 4,536.08             | 10                            |
| 11. | Pontani Mine                        | 11                 | 2 Seals                                | 22,000           | 13,750.00            | 2                             |
|     | Total all Sources                   |                    |                                        | \$ 619,583       |                      | 5,712                         |

Table 34a

Benefication - Recommended Plans

| Plan | Above<br>Sources<br>Abated | Benefication Pollution Reduction Acid Lbs./Day - % of Total | Benefication Pollution Reduction Iron Lbs./Day - % of Total | Benefication Pollution Reduction Sulfate Lbs./Day - % of Total | Total<br>Cost |
|------|----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|---------------|
| A    | 1 - 7                      | 5,690 - 75%                                                 | 2,119 - 75%                                                 | 9,411 - 73%                                                    | \$ 520,163    |
| B    |                            | 5,299 - 70%                                                 | 2,041 - 72%                                                 | 7,524 - 59%                                                    | 200,998       |

## KEY TO RECOMMENDED ABATEMENT PROCEDURES

- R1 Grass and legumes Method #1
- R2 Grass and legumes Method #2
- R3 Seedlings
- F Flumes
- D Ditching
- B Terrace backfill
- A Acreage on strip mines and refuse piles
- RP Standard Refuse Pile Reclamation
- RB Refuse Burial and Reclamation
- SC Soil Cover
- Plant Treatment Plant
- Pond Pond Construction and Reclamation
- Seal Mine Seal