V. APPENDIX ### A. Sampling Program Results #### 1. Regular Test Stations On the following pages in tabular form are the results of sampling data gathered throughout the course of the project at points selected for evaluation. Flows were measured at these stations by use of a 90° triangular V notch sharp crested weir inserted in a vitrified clay pipe or by use of Gurley current meter. Samples taken were sent to the Department of Environmental Resource's approved laboratory for testing. Under the column entitled "Other" the results of special analysis have been shown to indicate the quantity of the following chemical substances: | Chemical Substance | Symbol | |--------------------|--------| | Ferrous Iron | Fe₂ | | Aluminum | Al | | Calcium | Ca | APPENDIX SAMPLING PROGRAM RESULTS | Other
PPM | | | | |--------------------------|---|--|----------| | Alkalinity
PPM 1b/day | | 0000000 | | | Sulfates
PPM lb/day | 31494
12415
25504
10997
13369
41144
150,943
47732
60164
29176
26119
43964 | 41085 8.0 4.0 3.1 1.6 3.4 9.3 43.8 3.2 28.3 | 11.6 | | Su1
PPM | 446
490
570
600
620
424
250
380
330
475 | 454
360
390
570
200
425
345
325
350 | 352 | | Total Iron
PPM 1b/day | 5.0 342
18.0 456
14.0 626
13.0 238
17.0 366
23.2 225
25.7 15517
11.2 1407
10.9 2113
9.5 835
13.6 747
7.1 892 | 14.1 1981 3.0 0.1 24.0 3.0 18 0.1 1.8 0.1 8.4 0.1 12.5 0.3 3.4 .5 54.5 .9 17.6 1.4 | 15.9 0.7 | | ity
1b/day | 10269
3800
8502
4032
4528
2135
26566
17585
15526
8310
7698 | 10000
1
1
1
1
1
3
13 | 33 | | Acidity
PPM 1b | 150
150
190
220
220
220
44
140
88
88 | 144
68
110
150
120
160
100
80
42 | 103 | | рН | 8.8.8.8.8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9 | 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6 | 3.3 | | Flow | 5702
2110
3726
1526
1796
808
50288
10461
16164
7363
4579 | 9582
2
1
5
6
2
11.2
11.3 | 2.2 | | Date | 6-1-73
6-27-73
7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-14-73
12-28-73
1-26-74
2-16-74
3-23-74 | Average 7-12-73 8-2-73 9-7-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-23-74 | Average | | Test
Point No. | Point on Little Toby Creek | Cartwright Mine to
Little Toby Creek | | ## . APPENDIX SAMPLING PROGRAM RESULTS | Other
PPM | A1-14 | | | | |--------------------------|--|--------------------------|--|---------| | Alkalinity
PPM lb/day | 000000000 | | 00000000 | | | ates
1b/day | 8140
1436
2243
3414
981
1033
3019
6599
2249
5172
1712
4032 | 3336 | 58
65
27
24
35
30
155
33
88
88 | 55 | | Sulfates
PPM 1b/ | 1000
720
1300
1300
1300
1198
200
1020
745
900
1025
850 | 964 | 1200
1500
1700
1799
723
1100
725
825
850 | 1162 | | Total Iron
PPM 1b/day | 0.4 3.0
1.55 3.0
1.2 2.0
1.4 2.0
2.2 2.0
0.89 0.8
1.2 18.1
0.74 4.8
0.29 0.9
.59 1.0
.44 2.1 | 2.0 3.5
13th edition. | 10 5 60 6 90 3 60 3 60 3 60 3 60 60 60 60 60 60 60 60 60 60 60 60 60 | 7 7 | | | 0 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2.
meth.; 13 | 110
150
200
200
190
83
62
137
109
196 | 167 | | lity
1b/day | 1221
239
414
374
143
175
422
893
301
1057
340
579 | 615
std. me | 35
40
16
12
45
32
91
25
1 | 32 | | Acidity
PPM 1b | 150
120
240
210
190
204
28
138
100
184
204 | 157
129 s | 720
930
980
900
940
1180
700
540
560
620 | 807 | | Н | 4.1
3.7
4.1
4.0
4.0
4.0
4.0 | 4.0
by AA method | 2.5
2.5
2.7
2.7
2.6
3.1 | 2.6 | | Flow
GPM | 663
166
143
148
148
62
71
71
1257
538
251
479
139
395 | ge 359
determined l | 4.0
3.6
1.1
1.1
10.8
3.8
3.8 | 4.3 | | Date | 5-31-73
6-26-73
7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-28-73
12-28-73
1-26-74
2-16-74
3-23-74 | Avera
: Al | 7-12-73
8-2-73
9-7-73
10-10-73
11-25-73
12-14-73
12-28-73
1-26-74
2-16-74
3-23-74 | Average | | Test
Point No. | Unnamed Stream to Sawmill Run | Note | Cavazzi Mine to Sawmill Run | | V. APPENDIX A. SAMPLING PROGRAM RESULTS | Other
PPM | | | | |--------------------------|--|---------|---| | Alkalinity
PPM 1b/day | 0
0
0
2 7
2 40
4 48
0
0 | 2.2 31 | 000000000 | | Sulfates
PPM 1b/day | 5 7
29 17
7 4
149 562
250 5027
45 539
12 452.8
6 1514
150 996.2
40 552 | 69 831 | 590 350
780 210
610 99
660 71
650 53
649 24
349 85
355 246
310 217
575 619
350 226 | | Total Iron
PPM 1b/day | 0.2 0.3
0.5 0.3
0.6 0.4
0.15 0.6
1.05 21.0
0.58 7.0
0 0
.15 3.7
.29 1.93
0 0 | 0.3 3.5 | 11 7 36 10 27 4 24 3 20 2 18 1 9.71 2 31.85 22 9.44 6.6 13.6 19.6 9.78 6.3 | | Acidity
PPM 1b/day | 6 8
8 5
4 2
4 15
8 161 °
8 96
60 2264
6 151
8 53
4 55 | 12 281 | 280 166
260 70
320 52
580 63
340 27
280 68
100 69
104 73
280 301
142 92 | | ЬН | 5.7
5.6
5.9
4.6
4.1
4.2
4.8
5.3 | 5.0 | 3.0
3.1
3.2
2.9
3.0
3.0
.13
2.8
3.6 | | Flow | 116
47
49
3.4
1674
996
3143
2101
553
1149 | 1014 | 49
22
13
9
6
57
57
58
90
54 | | Date | 7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-14-73
12-28-73
1-26-74
2-16-74
3-23-74 | Average | 6-1-73
6-26-73
7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-28-73
1-26-74
2-16-74
3-23-74 | | Test
Point No. | 77
Llimwa2 no inic
nu | | ω
Dagus Mine Old Mine
Opening to Sawmill Run | ### APPENDIX SAMPLING PROGRAM RESULTS A. | Other
PPM 1b/day | | | Fe2-0.5 1 | | | | | | | | | Fe2-0.7 1 | | 41-15 | 7 | | | ٠ | | | | | | | | |--------------------------|-------------|---|-----------|---|---|------------|----------|----------|-------------------------|----------|----------|-------------|-------------|---------|----------|----------|---------|---------|----------|---------|----------|---------|----------------|----------|-------------| | Alkalinity
PPM 1b/day | 0 | 0 | - O | | | 0 | | 0 | 0 | 0 | 0 | [4 | 0 | · C | 0 | 0 | 0 | 0 | 12 17 | 0 | 0 | 0 | 0 | 0 | | | Sulfates
PPM 1b/day | | | 1100 2076 | | | 825 667 | | 850 1375 | 900 3882 | 825 1334 | | 929 2504 | 1100 4448 | | 1000 377 | 610 247 | 550 139 | 473 69 | 226 329 | 495 133 | 700 868 | 425 619 | 325 226 | 450 2693 | 580 913 | | Total Iron
PPM 1b/day | | | | | | | | | 38 164 | | | 24 68 | 4.1 16 | - | 5.1 2 | | 3.9 1 | 3.0 0.4 | 9.45 13 | 3.2 0.8 | 35.88 45 | 9.71 14 | 11.5 8 | 9.8 59 | 8.85 14 | | Acidity
PPM 1b/day | 390 3532 | | | | | | 318 463 | | | | 350 2359 | 357 1005 | | 150 202 | | | | 142 21 | | | | | 140 97 | | 178 257 | | рН | 3.0 | | • | • | | | • | | | | | 3.0 | | | | | | 3.5 | | | | | | | 3.5 | | Flow
te GPM | 5-31-73 754 | | | | ~ | ~ | ~ | -28-73 | 26-74 | 16-74 | | Average 228 | 5-31-73 336 | ~~ | | | | 33 | <u>س</u> | က | ξŲ. | | | 3–74 | Average 122 | | Test
Point No. Date | | | | | | ү ә |).
Le |) 4 | - ' -
λqα | To 2- | ال
و | Toby | | 9 | 7- | -8
-8 | 2 | ąəə |)
J |) , | γpλ | οŢ | ə ⁻ | 17-E | ρŢ | Note Al determined by AA method 129 standard method 13th edition SAMPLING PROGRAM RESULTS Ą | Other
PPM | | | | | | | | | | | | | | ٠. | | | | | | | | | | | | | e erior de execución de deservoltados de execución exe | | |--------------------------|------|--------|---------|-------|---------|-------|--------|--------|--------|----------|----------|----------|------|---------|---------|---------|---------|--------|--------|----------|----------|----------|----------|---------|---------|---------
--|---------------| | Alkalinity
PPM 1b/day | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | alle de des des de la company : application de des des des des des des des des des | | | Sulfates
PPM 1b/day | 4593 | 927 | 339 | 461 | 287 | 584 | 991 | 1527 | 4226 | 2243 | 1223 | 1837 | | 1603 | 3411 | 714 | 259 | 367 | 508 | 599 | 914 | 069 | 1364 | 2096 | 1000 | 3157 | | 1257 | | Sulf
PPM | 009 | 430 | 370 | 450 | 410 | 424 | 175 | 295 | 210 | 200 | 275 | 175 | | 334 | 280 | 250 | 370 | 400 | 410 | 397 | 226 | 320 | 220 | 240 | 225 | 305 | | 304 | | Total Iron
PPM 1b/day | | 4.8 10 | 6.3 6 | 5.2 5 | 60.0 4 | 4.7 6 | 7.3 42 | 4.9 25 | 3.0 61 | 4.5 50 . | 6.2 27.6 | 3.1 24.6 | | 9.3 23 | | | | | | 2.5 4 | | | | | | | A THE PARTY OF | 1.81 6 | | Acidity
PPM 1b/day | | | | | 150 105 | | | | 46 926 | | 60 266 | | | 88 348 | | | 58 41 | | | 84 109 | | | | 12 105 | | | | 55 186 | | Hd | 1 . | | 3.6 | | | 3.3 | • | • | 3.9 | | • | • | 1 | 3.6 | | | | | | 3.7 | | • | • | | | ٠
د | | 3.8 | | Flow
GPM | 637 | 179 | 9/ | 85 | 58 | 107 | 471 | 431 | 1676 | 934 | 370 | 099 | | 473 | 1014 | 237 | 58 | 9/ | 103 | 125 | 336 | 179 | 516 | 727 | 377 | 862 | | 384 | | Date | 1 | | 7-13-73 | | | | | | ~~ | 1-26-74 | 2-16-74 | 3-23-74 | | Average | 5-31-73 | 6-26-73 | 7-13-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-13-73 | 12-28-73 | 1-26-74 | 2-16-74 | 3-23-74 | | Average | | Test
Point No. | 67 | K | ЭЭ | zე | λ | qo | T | ЭŢ | 33 | ΓŢ | u | o qu | ijo, | H | 89 | | | | | | | | | | | | | Unnam
Litt | APPENDIX SAMPLING PROGRAM RESULTS | Other | | * And the state of | 8.0 | | |--------------------------|--|--|--|---------| | 최정 | | | A1-8.0 | | | Alkalinity
PPM 1b/dav | 0
0
0
0
0
0
0
0
2
17
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 2 73 | 0000000000 | | | Sulfates
PPM 1b/dav | 6825
1483
906
829
1132
1687
24259
3882 | 5240 6499 5469 | 4406
5772
3694
1571
1571
1421
10941
5466
4800
6943
6226
2681 | 4620 | | Sul | 120
86
160
290
200
200
198
150
60 | 200 95 | 1670
830
890
940
970
799
224
650
530
550
425 | 750 | | Total Iron
PPM 1b/dav | 11
4
6
1
1
2
291
0 | 37 | 13
9
2
2
2
488
17
17
118
65
31 | 64 | | Tota] | 0.2 | 2 2 | 1.0
1.9
1.1
1.1
1.1
1.1
1.1
1.1
2.1
2.1
2.6
8.9
4.9 | 3.5 | | Acidity
PPM 1b/day | 5 853
4 414
2 124
2 149
0 226 0
0 170
8 1293
8 518 | | 723
681
540
184
171
166
757
562
1666
679
568 | 969 | | AIM | 15
12
22
22
40
40
20
8
8 | 14 14 21 | 110
98
130
110
110
92
34
90
62
126
60
90 | 93 | | на | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 3.99 | 3.9 | | Flow | 4736
1436
471
237
471
709
13470
5388 | 2182
5698
3631 | 547
579
345
139
130
148
4067
700
754
1101
943
503 | 830 | | Date | 6-4-73
6-27-73
7-13-73
8-2-73
9-7-73
10-19-73
11-25-73 | 2-16-74
3-23-74
Average | 5-31-73
6-26-73
7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-14-73
12-28-73
1-26-74
2-16-74
3-28-74 | Average | | Test
Point No. | ek
Gun to Little
73 | Sawmill
Toby Cre | Asmed Stream to Little
by Creek | | Note Al determined by AA method 129 standard method 13th edition APPENDIX . SAMPLING PROGRAM RESULTS | Other
PPM | | $\frac{A1-100}{Ca-110}$ | | |--------------------------|---|---|--| | Alkalinity
PPM 1b/day | 0000000000 | 0000000000 | | | Sulfates
PPM 1b/day | 420 21125
430 6027
480 12136
550 4595
580 7848
776 12383
150 16602
410 10609
395 32368
275 15774
300 23402 | 422 13855 370 6742 480 854 460 1042 450 776 570 1474 602 10612 225 4852 345 1432 245 3487 225 3585 225 3585 | 373 3434
th edition
od 13th edition | | Total Iron
PPM 1b/day | 6.8 342
19.0 266
14.0 354
14.0 117
17.0 230
21.8 348
10.9 1206
13.6 351
24.7 2027
11.2 642
19.4 219
11.1 867 | 15.3 580 0.9 16 2.2 4 2.2 5 0.3 1 2.3 41 2.3 41 31.1 670 3.7 15 1.8 26 2.0 32 4.9 295 2.2 18 | 4.6 94 3
standard method 13th
203A standard method | | Acidity
PPM 1b/day | 180 9053
170 2382
200 5057
210 1754
220 2976
28 447
72 7969
150 3881
160 13111
144 8260
180 2037
128 9985 | 153 5576 78 1421 100 178 150 340 130 210 130 336 114 2009 88 1897 114 473 5.0 712 50 798 88 5313 48 404 | 91 1174 4
AA method 129 stand
AA EPA method 203A | | ЬН | | 3.2
4.4
3.7
4.2
4.2
4.4
4.1
8.1 | 1 4.1 determined by A | | Flow
GPM | 4189
1167
2105
695
1126
1329
9217
2155
6824
4777
1194 | 3439
1517
148
188
143
215
215
1796
1796
17329
5029
700 | 1171
Al det
Ca det | | Date | 5-31-73
6-27-73
7-12-73
8-2-73
9-7-73
10-19-73
11-25-73
12-14-73
12-28-73
1-26-74
2-16-74 | Average 3 5-31-73 1 6-26-73 1 7-12-73 1 8-2-73 1 9-7-73 1 10-19-73 1 11-25-73 1 12-28-73 1 12-28-73 1 1-26-74 5 3-23-74 5 | Average
Note: |
 Test
Point No. | er Run to Little
Toby Creek | ne Run to Little Ky. | | ### APPENDIX SAMPLING PROGRAM RESULTS | Other |--------------------------|---------|-------------|-----|---------------|--------|----------|----------|---------|----------|---------|-------|-------|--|---------|----------|------|------|--------|------------|------------|----------|----------|----------|---------|---------|---------|--|--------------| | Alkalinity
PPM 1b/dav | 0 | > | o c | > C | o c | > | 2 6 | | 6 25 | | | 0 | er en | 6 7 | <u> </u> | o c | > c | o c | > c | > | 4 2 | C | o c | o | o c | 0 | | 5 4 | | Sulfates
PPM 1b/dav | 266 | 160 | 65 | 81 | 87 | 161 | 528 | 287 | 656 | 289 | 460 | 4241 | | 593 | 801 | 786 | 408 | 330 | 501 | 339 | 112 | 460 | 348 | 742 | 825 | 249 | | 524 | | Sul | 170 | 370 | 240 | 250 | 250 | 271 | 175 | 205 | 160 | 140 | 225 | 115 | | 214 | 270 | 270 | 270 | 340 | 300 | 314 | 226 | 275 | 215 | 235 | 225 | 200 | | 261 | | 1 Iron
1b/day | 0.3 | 0.2 | 0.1 | 0.2 | 0.5 | 5.0 | 5.4 | 8.7 | 0 | . 9. | • | 0 | | 1.8 | 13 | 52 | 20 | 16 | 40 | . 33 | | 41 | 30 | 16 | 37 | 16 | | 27 | | Total
PPM 1 | 0.2 | 0.3 | 0.5 | 0.7 | 1.3 | 7.6 | 1.8 | 6.2 | 0 | ۳. | .7 | 0 | | 1.6 | 4.4 | 18.0 | 13.0 | 16.0 | 24.0 | 30.6 | 23.0 | 24.7 | 18.3 | | 10.3 | | | 16.0 | | Acidity
PPM 1b/day | .] | | | | | | | | 65 | | | | | 19 | | | | 43 | | | | | | | | | | 99 | | AC | 12 | 14 | 20 | 20 | 7 | 12 | 80 | 32 | 12 | 16 | 10 | 9 | | 14 | ∞ | 26 | 30 | 77 | 26 | 77 | 88 | 74 | 77 | 10 | 7 | 74 | | 39 | | Hd | 4.7 | • | • | • | • | • | | • | 4.7 | | • | • | | 4.7 | 5.5 | 5.5 | 5.6 | 5.3 | 6.4 | 5.3 | 4.6 | 3.5 | 4.1 | 5.3 | 4.2 | 5.1 | | 6.4 | | Flow
GPM | 130 | 35 | 22 | 26 | 29 | 67 | 251 | 116 | 341 | 172 | 170 | 3071 | | 367 | 246 | 242 | 125 | 80 | | | | | | | | | | 172 | | Date | 5-31-73 | 6-26-73 | | 8-2-73 | 9-7-73 | <u>`</u> | 11-25-73 | <u></u> | 7 | 1-26-74 | -16-7 | -23-7 | - Anna de la competica c | Average | 31-7 | (7 | 13-7 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-13-73 | 12-28-73 | 1-26-74 | 2-16-74 | 3-23-74 | majo megalini alje, s vija, salaj ilimajo delik salam sa est | Average | | Test
Point No. | 77 | | | | | | | | ə
Jəu | | | | | | 78 | | | | 0: | 1 7 | | | | | | | | naed
Itil | ### APPENDIX SAMPLING PROGRAM RESULTS Α. | Other
PPM | Ca-110 | | | | |--------------------------|--|---|---|--| | Alkalinity
PPM 1b/day | 00000000 | | 000000 | | | Sulfates
PPM lb/day | 60
65
45
21
15
30
23
81
41.5
66 | 45
edition | 16
32
19
7
49
36
29
33 | | | Sulf
PPM | 560
550
490
323
276
285
200
325
350
350 | | 600
600
451
455
255
225
340
404 | | | Total Iron
PPM 1b/day | 39 4.2
33 3.9
28 3.0
17.8 1.0
4.2 0.2
19.4 2.1
2.3 0.2
5.4 1.0
17.3 2.0
12.0 2.0 | 17.8 2.0 371 standard method 13th | 5.2 0.1
5.4 0.3
26.1 1.1
2.8 .01
1.2 0.2
3.4 .5
2.2 .6
5.9 0.4 | | | Acidity
PPM 1b/day | 220 24
220 26
190 17
180 12
232 13
210 33
80 9
166 41
140 16
254 48 | 189 24
AA EPA method 203A s [.] | 130 3.5
140 7.5
124 5.4
122 1.9
44 8.5
54 8.7
80 21.4 | | | Hq | | 10
determined by AA EP | 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6. | | | Flow
GPM | 9
7
7
5
4
9
9
10
16 | | 2
4
3
1
16
34
22
22
23 | | | Date | 7-13-73
8-2-73
9-7-73
10-19-73
11-25-73
12-13-73
12-28-73
1-26-74
2-16-74
3-23-74 | Average
Note: Ca | 8-24-73
9-7-73
10-9-73
12-13-73
12-28-73
1-26-74
2-16-74 | | | Test
Point No. | α
agus Mine Air Seal to
ittle Toby Creek | | ∞
Kyler Mine Caved Mine Headi
o Little Toby Creek | | . APPENDIX A. SAMPLING PROGRAM RESULTS | <u>1b/</u> day | | v. | 102
147 | + | 52 | | 315 | 91 | 261 | 330 | 163 | | | | | | | | | | | | ! | | | |--------------------------|-------------------|---------|------------------|------|----------|------|---------------------|---------|-------------|----------------|---------|--------|---------|----------|--------|--------|----------|----------|---------|----------|---------|---------|---------|---------|--| | Other
PPM | A1-19 | Ca-y | | · . | - 6.7 | • | 14. | ν, i | | 15. | - 11.8 | | A1-95 | A1 - 130 | | | | | | | | | | | | | Alkalinity
PPM 1b/day | 00 | | 0 Fe2-
0 Fe2- | | 0 Fe2- | | 0 Fe ₂ - | | | | Fe2- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sulfates
PPM 1b/day | 9531
4949 | 4528 | 3018 | 3112 | 2931 | 5693 | 9704 | 4448 | 4596 | 6833 | 5376 | 453 | | | | | 151 | | | | | | 45 | 552 | edition
13th edition | | Sulf
PPM | 520
450 | 500 | 560 | 451 | 375 | 009 | 450 | 275 | 275 | 325 | 877 | 1200 | 1300 | 1500 | 1000 | 1700 | 1398 | 916 | 1050 | 1065 | 009 | 900 | 009 | 1105 | | | Total Iron
PPM 1b/day | 257
407 | 263 | 156
285 | 180 | 206 | 232 | 759 | 376 | 518 | 578 | 351 | 9.0 | 0.4 | 0.2 | 0.3 | 0.3 | 0.1 | 0.5 | | 4.3 | 9.5 | .7 | 9.5 | • | standard method 13th
203A standard method | | Total | 14.0 | 29.0 | 29.0 | 26.1 | 26.4 | 24.5 | 35.2 | 22.7 | 31.0 | 27.5 | 28.0 | 1.5 | 2.2 | 2.6 | 2.5 | 2.5 | 0.9 | • | 1.36 | 2.01 | 12.6 | • | 12.6 | 3.3 | ndard
A stan | | ity
1b/day | 4399
1980 | 2083 | 1347. | 179 | 1563 | 3321 | 5175 | 3429 | 4010 | 5046 | 2912 | 219 | 97 | 20 | 98 | 96 | 82 | 24 | 654 | 1169 | 993 | 33 | 257 | 336 | method 129 stand
EPA method 203A | | Acidity
PPM 1b | 240
180 | 230 | 250 | 26 | 200 | 350 | 240 | 212 | 240 | 240 | 224 | 580 | 009 | 230 | 730 | 710 | 760 | 32 | 920 | 542 | 542 | 526 | 340 | 542 | AA meth
AA EPA | | Hď | 3.0 | • | 3.6 | | • | • | | • | • | | 3.1 | | | | • | • | 3.6 | • | 3.5 | 3.4 | • | • | 3.9 | • | determined by A | | Flow
GPM | 1526
915 | 754 | 449 | 574 | 651 | 790 | 1796 | 1347 | 1391 | 1751 | 1054 | 31 | 13 | 7 | 10 | 11 | 10 | 62 | 59 | 179 | 153 | 53 | 63 | 54 | Al det
Ca det | | Date | 6-1-73
6-26-73 | 7-13-73 | 8-2-73 | ٦ 1 | 11-25-73 | 1 | 12-28-73 | 1-26-74 | 2 - 16 - 74 | 3-23-74 | Average | 6-1-73 | 6-26-73 | 7-13-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-9-73 | 12-28-73 | 1-26-74 | 2-16-74 | 3-23-74 | Average | Note: | | Test
Point No. | 93 | C | t t | ₹uŗ | ьв | эн | | | | кујет
Кујет | | 94 | | | ₹ | սոչ | | | | | | | | - | nnU
x38 | SAMPLING PROGRAM RESULTS Α. | | p/day | | , | ; | | | | | | | | | | i | | | • | 7 0 | ۰ (بر | 1 | | | | 23 | 11 | 28 | | T | | |--------------------------|--------|---------|----------------------|--------|--------|----------|----------|---------|----------|--------|-----|------------
--|----------------------|--------|----------|---------|---------|----------------------|---------------|----------|---------------|----------|---------|-------|---------|-----|----------------------|--| | Other | 1 1 | ! | Fe ₂ -0.5 | 1 | | | | | | | | | and the second s | Fe ₂ -0.5 | | - | 1 | re2-0.5 | Fe ₂ -2.7 | e2-1.0 | 1 | | | - 1.5 | 2 4 5 | Fe, 5.6 | 2.5 | Fe ₂ -3.3 | | | Alkalinity
PPM 1h/day | 120 | 61 | | | 77 | 17 | 24 | 256 | 562 |)
(| | 0 | | 4 09 | c | . | | | | | | > 0 | | | | Fe | | Fe | | | AIK | 20 | 30 | 300 | 78 | 52 | 5,0 | 77 | 80 | 9 6 | 72 | ! | | - | 43 | | | | | | | | | | , | | | | | | | Sulfates
PPM 1b/dav | 203 | 109 | 129 | 12 | 9.7 | 7.3 | 121 | 304 | 582 | 629 | 8.1 | 505 | | 218 | 6268 | 6678 | 1879 | 967 | 800 | 376 | 1267 | 1132 | 7777 | 4205 | 1820 | 5294 | | 2851 | | | Sul | 78 | , r. | 57 | 38 | 36 | 34 | 225 | 95 | 120 | 100 | 125 | 80 | | 83 | 380 | 590 | 720 | 750 | 410 | 370 | 226 | 225 | 325 | 150 | 175 | 200 | | 325 | | | Total Iron
PPM 1b/day | 3 5 |) m | | 0 | 0 | 0 | | - | 3 24 | | | 40 | | 0.01 | | | | | | | · | | | 0 364 | | | | 104 | | | | | - | ~ | 7. T | 1.(| 4 | | 6.5 | 4.9 | 4.2 | 1 | 6.4 | | 3.0 | 5.4 | 8,0 | × × | 0.9 | 4.6 | 4.3 | 2.0 | 14. | 9.1 | 13.0 | 13. | 10. | | 8.3 | | | Acidity
PPM 1b/day | | | | | • | | | | 58 | | | | | 0.09 | 249 | | | | | | | | | 2803 | 104 | | | 803 | | | Acf | | ٠ | | | | 2.0 | ∞ | 10 | 12 | 32 | 9 | 12 | | 11 | 120 | 98 | 120 | 110 | 76 | 84 | 34 | 82 | 80 | 100 | 10 | 84 | | 83 | | | Hď | ١. | 6.7 | | | | | | | 4.8 | | | | | 6.2 | • | | • | • | | | | | | 3.2 | | | | 3.4 | | | Flow
GPM | 498 | 170 | 188 | 27 | 22 | 18 | 45 | 566 | 404 | 524 | 5 | 524 | | 224 | 1373 | 473 | 372 | 89 | 103 | 89 | 995 | 418 | 1915 | 2335 | 867 | 2205 | | 893 | | | Date | 6-1-73 | 6-27-73 | 7-13-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-9-73 | 12-28-73 | -26-7 | | -23-7 | | Average | 6-1-73 | 6-26-73 | 7-13-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-9-73 | 12-28-73 | 1-26-74 | _7 | 3-23-74 | | Average | | | Test
Point No. | 97 | | рə | шe | | | | | | | | ечш
Бүч | | | 66 | | | | | | | 0 | 3 | am | ıce | | | Иппат
Кудег | | V. APPENDIX . SAMPLING PROGRAM RESULTS | Other | + + + A |--------------------------|-----------|-----|---------|-----|----------|--------------|------|-----|-------|--------------|------|--------------|--|--------------|--------|------------|---------|-----|----------|---|---|---|---|----------|-------------|----------|-------------|--| | Alkalinity
PPM 1h/day | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | | 0 | 0 | 0 | Andrews of the control contro | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sulfates
PPM 1b/dav | 420 28076 | | | | | 426 4272 | | | | 225 23208 | | | | 368 18568 | 190 | | | | 320 14 | | | | | - | | |
194 112 | | | Total Iron | 3.2 214 | | 9.5 232 | | 10.0 151 | 9.4 94 | 36.7 | | | 9.0 928 | 12.9 | 7.6 456 | ikeris ele iliginado de la calenda de la | 11.2 471 | 0.4 | 1.1 0.2 | 1.0 0.1 | 6.0 | 0.8 .03 | | | | | .146 .28 | .741.90 | .444 2.0 | 0.78 .39 | | | Acidity
PPM 1b/day | 120 8022 | | | | 210 3170 | | | | 25462 | | 905 | 6159 | | 130 6799 | 24 | | | | 7 96 | | | | | | 20 24 | |
42 13 | | | На | 3.3 | 3.4 | 3.4 | 3.1 | 3.2 | 3,3 | 3.5 | 3.3 | 3.4 | 3.4 | 3.2 | 3.6 | | 3.4 | 4.1 | | | | 3.6 | | | | | | | |
4.3 | | | Flow
Date GPM | 1 | | | | | 10-19-73 835 | | | | 1-26-74 8591 | | | open of the country of the contraction of the country count | Average 4614 | 6-4-73 | 6-27-73 13 | | | 9-7-73 3 | | | | | | 2-16-74 101 | | Average 64 | | | Test
Point No. | | | | | | | ĸ | .əu | مدا | co | s, | 176r
15 0 | | | 103 | | | | | | - | | | | un | Я - | Yer | | APPENDIX A. SAMPLING PROGRAM RESULTS | 1b/day | | | 87 | 39 | 42 | 10 | 14 | 06 | 20 | 12 | 77 | 7 | | 32 | | 28 | 1153 | 1638 | 1279 | 369 | 699 | 1025 | | 267 | 650 | 820 | | |--------------------------|--------|---------|----------|--------|--------|----------|------|------------|------|----------|----------|-----------------------|--|-----------------------|---------|------|---------------|--------|------|------|----------|------|-------|------|------------------------|------------------------|--| | Other
PPM 1 | ! | - | e-18.0 | | | e2- 6.7 | | e2-19.0 | _ | 'e?- 5.6 | 'e,- 5.6 | Fe ₂ - 1.1 | | Fe ₂ -13.0 | | | $Fe_{2}-91.0$ | | | | | | i | | Fe ₂ - 26.9 | Fe ₂ - 50.0 | | | Alkalinity
PPM lb/day | 0 | 0 | | | | | | 0 | | | | | en anderson and and and and and and and and and an | 124 | | | 0 | | | | | | | | | 1 | | | Sulfates
PPM 1b/day | | 2277 | 1294 | 728 | 785 | 507 | 313 | 1858 | 461 | 841 | 2540 | 849 | | 1114 | 31654 | | 12289 | | | | | | | | 2 | 14517 | | | Sul | 470 | 480 | 480 | 500 | 520 | 348 | 200 | 390 | 225 | 390 | 325 | 325 | | 388 | 840 | 840 | 970 | 1000 | 597 | 850 | 1020 | 925 | 45 | 400 | 450 | 722 | | | l Iron
1b/day | | 171 | 102 | 47 | 63 | 77 | 95 | 120 | 54 | 21 | 111 | 14 | | 72 | 3316 | 2093 | 1393 | 2131 | 1793 | 1485 | 721 | 1323 | 6 | 759 | 629 | 1426 | | | Total
PPM | 4.2 | 36.0 | 38.0 | 32.0 | 42.0 | 30.0 | 29.4 | 25.3 | 26.1 | 9.7 | 14.3 | 7.1 | *************************************** | 24.5 | . 88 | 9/ | 110 | 130 | 66 | 78.5 | 48.3 | 85.1 | · 3 | 40.5 | 27.3 | 71.2 | | | Acidity
PPM 1b/day | 00 | | 110 297 | | | | | .34 639 | | | · | 32 64 | | 97 237 | 0 8290 | | 0 4054 | | | | | | 8 239 | | | 8 4652 | | | PF | 1(| Π | Π | 12 | 16 | 77 | 7 | = | - | 9 | v | | | O1 | 22 | 23 | 320 | 38 | 42 | ľΩ | 040 | 20 | 8 | 17 | 206 | 238 | | | рн | • | • | • | • | • | | • | 3.1 | • | | | • | | 3.5 | • | | 2.9 | | • | • | • | • | • | • | • | 3,5 | | | Flow
GPM | | | | | | | 130 | 396 | 170 | 180 | 651 | 166 | | 243 | 3138 | 2294 | 1055 | 1364 | 1508 | 1575 | 1243 | 1293 | 2492 | 1563 | 2012 |
1776 | | | Date | 6-4-73 | 6-27-71 | 7-12-73 | 8-2-73 | 9-7-73 | 10-19-73 | 5-7 | 12-13-73 | 3-7 | 7 | -7 | 3-23-74 | | Average | 6-23-73 | - | 8-2-73 | 9-7-73 | 7-6 | -25 | 12-14-73 | -28- | -26-7 | | 3-23-84 | Average | | | Test
Point No. | 104 | тę | . | FT. | Į C | | | ree
Mir | | | | | | | 107 | | | | un | Я | λs | Нз | 0 | ב | əuţW | қλјец | | # V. APPENDIX . SAMPLING PROGRAM RESULTS | 11. / 1 | Aeb/at | , | - H | 4 | | - | | 12 | ∞ | 2 | 4 | 4 | | | | | | | | | | | | And the best of the second sec | | |--------------------------|-----------|-------------------|---------|---------|---------------|---------|----------|---------|-------------|---------|---------|---------|--|---------|--------|--------|----------|----------|----------|----------|---------|-----|---------|--|--| | Other
PPM | A1-24 | La-108
Fe,-0.5 | Fe7-8.4 | Fe,-0.8 | 7 - 7 | Fen-6.7 | 7 | Fe,-6.7 | _ | Fe2-4.5 | | Fe2-4.3 | | | | | | | | | | | | Angelen er | | | Alkalinity
PPM 1h/day | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 24 11 | 18 2.3 | 0 | 0 | 0 | 0 | 21 6.6 | | | tes
1b/day | 559 | 73 | 61 | 36 | 13 | 95 | 2377 | 733 | 776 | 145 | 899 | 503 | lon
edition | 33 | 53 | 17 | 35 | 83 | 27 | 80 | 168 | 72 | 773 | 134 | | | Sulfates
PPM 1b/c | 610 | 680 | 750 | 830 | 798 | 650 | 700 | 425 | 450 | 400 | 400 | 609 | editi
13th | 310 | 380 | 320 | 326 | 176 | 215 | 275 | 195 | 225 | 305 | 273 | | | Iron
1b/dav | 64 | Ŋ | 4 | က | | 5 | 104 | 11 | 58 | 14 | 47 | 33 | od 13th
I method | 8.0 | 1.2 | 1.4 | 1.2 | 1.5 | .9. | 1.1 | 7. | 1.2 | 8.3 | 1.9 | | | Total Iron
PPM 1b/day | 50 | 77 | 50 | 09 | 95 | 36.7 | 30.7 | 44.7 | 33.4 | 38 | 28 | 42.0 | standard method 13th
203A standard method | 8.0 | 0.6 | 26.0 | 11 | 3.2 | 4.3 | 3.77 | 77. | 3.9 | 3.3 | 7.3 | | | ty
1b/day | | 41 | 32 | 18, | 6 | 65 | 2037 | 518 | 562 | 123 | 471 | 379 | | 12 | 11 | 4 | 100 | 20 | 6.4 | 11.6 | 28 | 30 | 61 | 20 | | | Acidity
PPM 1b | 340 | 380 | 400 | 420 | 260 | 340 | 009 | 300 | 326 | 340 | 282 | 390 | method 129
EPA method | 9/ | 80 | 82 | 100 | 77 | 50 | 40 | 32 | 94 | 24 | 62 | | | Нф | 3.0 | | • | | | | 2.8 | | | | | 2.9 | by AA
by AA | 3.7 | 3.3 | 3.4 | 3.2 | 5.7 | 5.4 | 3.4 | 5.5 | 3.7 | 5.1 | 4.2 | | | Flow | 76 | 6 | 9 | æ | 1 | 12 | 282 | 143 | 144 | 30 | 139 | 77 | determined
determined | 6 | 11 | 7 | 6 | 39 | 10 | 24 | 72 | 27 | 211 | 42 | | | Date | 6-26-73 | 7-13-73 | 8-2-73 | 9-7-73 | 10-19-73 | -25-7 | 12-13-73 | -28-7 | 1 - 26 - 74 | -16- | 3-23-74 | Average | Note: Al | 7-12-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-13-73 | 12-28-73 | 1-26-74 | 2-9 | 3-23-74 | Average | | | Test
Point No. | 112
ng | ibe | зән | | | | | | | | Dag | | | 113 5 | 8 | uŢ | aq | əн | | | | | | ags
ail o | | V. APPENDIX A. SAMPLING PROGRAM RESULTS | | | | | | | | | | | | | • | | | | | | | | | | |--------------------------|---------|--------|-------------|----------|----------|----------|----------|---------|---------|---------|-----------------|--------|----------|----------|----------|-------------|---------|---------|---------------|--|--| | Other | Alkalinity
PPM 1b/dav | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 00 | 0 | 0 | 0 | 0 | 0 | | | | | Sulfates
PPM 1b/dav | 41 | en | 7 | 16 | 2669 | 100.9 | 383 | 737 | 1364 | 2838 | 816 | 13585 | 5005 | 25197 | 68236 | 23462 | 20836 | 17731 | 24864 | | | | Suli | 380 | 120 | 380 | 274 | 225 | 260 | 205 | 285 | 225 | 450 | 280 | 900 | 349 | 410 | 310 | 200 | 250 | 275 | 342 | | | | Total Iron
PPM 1b/dav | 0.4 | 0.1 | 0.1 | 0.2 | 29.6 | 0.5 | 1.4 | 2.0 | | 0.9 | 4.0 | 521 | 545 | 958 | 2906 | 1243 | 1066 | 558 | 1114 | | | | Total | 3.7 | 4.1 | 5.7 | 3.4 | 2.5 | 1.4 | .7 | 9. | 1.5 | 6. | 2.5 | 23.0 | 38.0 | 15.6 | 13.2 | 10.6 | 12.8 | 8.7 | 17.4 | | | | ity
1b/dav | 11 | e | | 9 | 999 | 23 | 41 | 57 | 424 | 719 | 195 | 5434 | 3155 | 8604 | 26853 | 14312 | 11501 | 6190 | 10864 | | | | Acidity
PPM 1b | 100 | 110 | 120 | 102 | 99 | 09 | 22 | 22 | 70 | 114 | 78 | 240 | 220 | 140 | 122 | 122 | 138 | 96 | 154 | | | | Hd | 3.6 | 3.2 | • | • | | | | • | • | 4.1 | 3.8 | 3.1 | 3.1 | 3.1 | 3.4 | 3.2 | 3.2 | 3.7 | 3.3 | | | | Flow | 6 | 2 | | 5 | 286 | 32 | 155 | 215 | 505 | 525 | 244 | 1885 | 1194 | 5118 | 18332 | 9770 | 6941 | 5370 | 7769 | | | | Date | 7-12-73 | 8-2-73 | 9-7-73 | 10-19-73 | 11-25-73 | 12-13-73 | 12-28-73 | 1-26-74 | 2-16-74 | 3-23-74 | Average | 9-7-73 | 10-19-73 | 12-14-73 | 12-28-73 | 1-26-74 | 2-16-74 | 3-23-74 | Average | | | | Test
Point No. | 121 % | [4] | :ws | ; u | шОЗ | | | | | | isnnil
Rogos | 130 | . MoŢ | Вe | Ą | ∍ ə: | τЭ | Λqο | r əlt
wolt | | | ### 2. <u>Special Test Stations</u> In addition to the regular test stations, investigations were made at numerous other points to more accurately pinpoint problem areas and to clarify questions that had arisen from past results. A summary of these results are enumerated hereunder: - (a) From this form of testing it was learned that the flows on the western side of the Cartwright Mine were acidic in some locations and alkaline in others. - (b) Sample results from points #62, an outlet to a surface mine pond, and #131 a point up stream from discharge of pond, indicated that after the | Test
<u>Point</u> | Date | Flow
GPM | рН | Acidi
PPM | ty
<u>#/Day</u> | Total
PPM | Iron
#/day | Sulf
PPM | ates
1b/day | Alkal
PPM | inity
1b/Day _ | Other | |----------------------|---------|-------------|-----|--------------|--------------------|--------------|---------------|-------------|----------------|--------------|-------------------|-------| | 3 | 8-22-73 | 1 | 2.7 | 220 | 1.2 | 28 | 0.2 | 310 | 1.7 | | | | | 14 | 8-22-73 | 1 | 7.0 | | | 6 | 0.1 | 160 | 1.7 | 110 | 1.2 | | | 15 | 8-22-73 | 1 | 2.5 | 7.30 | 7.8 | 110 | 1.2 | 830 | 8.9 | | | | | 16 | 8-22-73 | 2 | 2.8 | 220 | 4.7 | 73 | 1.5 | 520 | 11.2 | | | | | 17 | 8-22-73 | 11 | 6.8 | | | 4 | 0.6 | 470 | 63.3 | 170 | 22.9 | | | 143 | 8-22-73 | 27 | 7.7 | | | 5 | 1.4 | 540 | 174.7 | 150 | 48.5 | | ponding and liming, the water quality was poorer than the stream coming directly through the stripping spoil. These points are on the head waters of Little Toby Creek due east of Coal Hollow. | 62 8-22-73 31 3.7 79 29.8 9 3.4 430 162.3
131 8-21-73 34 3.5 51 20.6 2 0.6 130 52.6 | Test
<u>Point</u> | Date | Flow
GPM | | lity
#/Day | | | linity
<u>lb/day</u> | | |--|----------------------|------|-------------|--|---------------|--|--|-------------------------|--| | | | | | | | | | | | (c) Water being emitted from air seals along the old road from Toby to Coal Hollow varied considerably in quality in that two points, (79, 80) were found to be alkaline and have tolerable sulfate quantities while the other seals were emitting acid water with wide ranges of sulfates. Iron contents were fairly constant. | Test
Point | Date | Flow
GPM | pН | Acid
PPM | lity
1b/day | Tota
PPM | l Iron
#/day | Sulf
PPM | ates
<u>lb/da</u> y | | linity
lb/day | Other | |---------------|----------|-------------|-----|-------------|----------------|-------------|-----------------|-------------|------------------------|----|------------------|-------| | 65 | 3-23-74 | 135 | 4.9 | 46 | 74 | 59 | 97.0 | 225 | 364 | | | | | 79 | 8-24-73 | | 6.5 | | | 2.8 | | 290 | | 10 | | | | 80 | 8-24-73 | 6 | 7.5 | | | 5.1 | 0.4 | 24 | 1.7 | 73 | 5.1 | | | 80 | 9-7-73 | 1 | 7.8 | | | 0.1 | | 29 | 0.3 | 84 | 0.9. | | | 84 | 8-24-73 | 1 | 2.9 | 270 | 2.9 | 7.1 | 0.1 | 520 | 5.6 | | | | | 84 | 9-7-73 | | 3.0 | 240 | | 7.2 | | 500 | | | | | | 84 | 10-19-73 | 1 | 3.0 | 264 | 0.1 | 8.6 | 0.0 | 524 | 0.1 | | | | (d) Water from the Ticossi Mine in the Middle
Kittanning Coal is alkaline, the same as water from the Eureka #2 Mine (#97). The sulfate and iron content however is higher at Ticossi. | Test
Point | Date | | | | | | | | | linity
1b/day | | |---------------|---------|---|-----|------|-----|-----|-----|-----|-----|------------------|--| | 122 | 8-22-73 | 4 | 7.6 |
 | 3.1 | 0.2 | 150 | 8.1 | 120 | 6.5 | | (e) The dilution of the mine water surfacing at point #113 in the Limestone Run area by an alkaline spring with acceptable iron and sulfate quantities located downstream is effective in improving water quality. | Test
Point | Date | Flow
GPM | | | ity
1b/day | | | | ates
1b/day | | linity
1b/day | Other | |---------------|---------|-------------|-----|----|---------------|------|-----|-----|----------------|-----|------------------|-------| | 132 | 8-21-73 | 11 | 6.6 | | | 0.6 | 0.1 | 2.0 | 7.9 | 2.2 | 3.0 | | | 133 | 8-21-73 | 13 | 6.0 | 15 | 2.4 | 0.9 | 0.1 | 170 | 275 | | | | | 113 | 8-2-73 | 11 | 3.3 | 80 | 11 | 9.0 | 1.2 | 380 | 53 | | | | | 113 | 9-7-73 | 4 | 3.4 | 82 | 4 | 26.0 | 1.4 | 320 | 17 | | | | (f) Water delivered to a home from the Dagus Mine Water Supply, located near reference point 90 was analyzed and found to have a pH of 6.1 and acid content of 4 ppm. A water sample taken from a gas station receiving water from the Kyler Run Reservoir was also analyzed and found to be a higher quality water as alka linity was tested at 2 ppm, iron at 0.5 ppm and sulfates at 5 ppm. The pH was 6.7. Sample numbers were 134 and 135. (g) Sampling of Hays Run at reference point 139 above the Kyler Mine water course at point #107 indicates that the mine is the source of pollution on this stream. | Test | | Flow | Acidity | Tota | 1 Iron | Sulf. | ates | Alka | linity | Other | |-------|---------|--------|------------|------|--------|-------|--------|------|--------|-------| | Point | Date | GPM pH | PPM 1b/day | PPM | #/day | PPM | 1b/day | PPM | 1b/day | | | 139 | 8-22-73 | 6.4 | | 1.9 | 0.9 | 62 | 30.1 | | | | - (h) The effect of seepage through old mine refuse located on the western bank of Little Toby Creek was determined by analyzing water from pools located above and below a refuse pile located on Little Toby Creek. The water in the lower pool coming from seepage through the refuse. In this case the pH went from 3.4 to 2.6 while the acidity went from 92 to 360 ppm. Iron content rose from 4 to 72 while sulfate went from 380 to 590. See analysis results for points 141 and 142 on page 35. - (i) Results of water analysis from other points are tabulated hereunder. | Test
Point | Date | Flow
GPM | рН | Acid: | ity
1b/day | | l Iron
#/day | | ates
1b/day | Alka
PPM | linity
lb/day Location | |---------------|----------|-------------|-----|-------|---------------|------|-----------------|------|----------------|-------------|---------------------------| | 90 | 8-22-73 | 22 | 3.0 | 160 | 43.1 | 17 | 4.6 | 490 | 132.1 | | Air Seal-
Dagus Mine | | 106 | 8-22-73 | . 1 | 2.4 | 640 | 6.9 | 110 | 1.2 | 660 | 7.1 | | Air Seal-
Kyler Mine | | 111 | 8-24-73 | | 6.7 | | | 1.5 | | 19 | | 10 | Spring Disgs. | | 125 | 8-22-73 | | 6.7 | | | 0.8 | | 14 | | 9 | Pond discharge | | | | | | | | | | , | | | Daguscahonda
Run | | 136 | 8-24-73 | 6 | 2.8 | 310 | 21.7 | 36 | 2.5 | 820 | 57.5 | | Caved Drift-
Toby Mine | | 138 | 8-24-73 | | 5.9 | 6 | | 1.5 | | 31 | | | Spring Disgs. | | 140 | 8-24-73 | | 3.0 | 150 | | 8.0 | | 400 | | | Pond | | 144 | 8-24-73 | 22 | 3.4 | 78 | 302.7 | 3.9 | 15.1 | 360 | 1397.3 | | Little Toby Cr. | | 149 | 2-16-74 | | 5.7 | 82 | 1708 | 10.3 | 214 | 225 | 4686 | | Kyler Run | | 150 | 2-16-74 | 1795 | 3.6 | 64 | 1380 | 4.2 | 89 | 275 | 5930 | | Little Toby Cr. | | 151 | 2-16-74 | 13 | 6.0 | 10 | 2 | 0.9 | 0.1 | 300 | 48 | | Swamp Disgs. | | 98 | 10-19-73 | | 3.0 | 200 | | 26.1 | | 524 | | | Unnamed Stream | | | | | | | | | | | | | to Kyler Run | | 98 | 2-16-74 | | 3.0 | 140 | | 27.2 | | 425 | | | Pond along | | | | | | | | | | | | | Unnamed Stream | | 49 | 9-7-73 | | 6.8 | 10 | 0.5 | 1.1 | 0.05 | 680 | 33 | | Spring Disgs. | | 117 | 9-7-73 | 4 | 3.0 | 1100 | 47 | 20 | 0.9 | 2100 | 91 | | Discharge from | | | | | | | | | | | | | Surface Mine | ### B. Subsurface Exploration Program #### 1. SL 132-5 Project Area In order to properly evaluate proposed reclamation measures and ascertain the validity of the mine map information utilized for the preparation of this plan a subsurface exploration program was under taken. The results of this program are included herein. The tabulation on pages 62 through 73 briefly describes the findings at each hole and summarizes the results of the drilling and pressure testing within the project area. The drill lugs have been plotted and are also presented herein. There locations are found on Plate 19. An investigation and determination of property owners was made during the subsurface exploration program. Information obtained was presented to DER in reproducible form at that time. ### 2. SL 132-1 Project Area In order to obtain more data to assist in the evaluation of information provided to DER in the Toby Creek SL 132-1 Report five test holes here drilled in the Brandy Camp Creek to Hays Run Area. Of these five, three were cored and two drilled with an air rotary rig. From the information; provided by drilling these five holes, we have concluded that the Lower Kittanning seam has been mined out as shown, but there are major variances in the contours. There was no evidence of mining in the Middle Kittanning seam except in drill hole KK which means holes II, JJ and LL all hit pillars of coal remaining in the mined out area or mining in this seam was not as extensive as shown. The elevations of this seam found by drilling conformed with those shown on Drawing A4. Drill hole EE hit a barrier as anticipated. The Freeport Limestone depicted on Drawing A5 does exist throughout this area as shown. A brief analysis of these holes is found on page 74. The drill hole locations are found on Plate 6, while logs are found on Plates 16 and 17. The following tabulation and drill hole logs summarizes the results of the drilling and pressure testing conducted within the project area. | Drill Hole | No. <u>Type</u> | Comments | |------------|-----------------|--| | A | Core Boring | Lower Kittanning coal barrier was found in tact. Minimal amounts of grout would be required above and below the coal seam; however, the seam itself was found to be quite permeable. | | В | Core Boring | Mine void was encountered in Lower Kittanning coal seam. This was considered to be the heading shown on the mine map. Apparently the outflow of water was restricted since the 24 hour reading indicated that the water level was above the roof of the mine. Grout requirements 28 feet above the void are minimal. | | С | Core Boring | Lower Kittanning coal barrier was found intact. Heavy grouting required below, in and above coal seam. | | D | Core Boring | Lower Kittanning Coal barrier was encountered. Grouting considered unnecessary. 24 hour water level was above coal seam. | | E | Core Boring | Lower Kittanning coal seam was found intact Heavy grouting could be required below, in and 8 feet above coal seam. | | E-1 | Core Boring | Mine void found in Lower Kittanning seam assumed to be mine opening shows on mine map. Mine roof was found to be very solid thereby eliminating the need for grouting. | | F | Core Boring | Lower Kittanning coal barrier was found intact
Heavy grouting could be required above and below
the coal seam. The coal seam itself and the
strata immediately above it was found to be
impervious. | | G | Rotary | The Lower Kittanning coal seam was found signifying that a stump in the mine had been encountered. A monitor well was installed. | | Drill Hole No. | <u>Type</u> | Comments | |----------------|-------------|--| | Н | Rotary | The Lower Kittanning coal seam was encountered and found in tact. This site would be suitable for discharge. | | I | Rotary | A mine void in the Lower Kittanning coal seam was found. This site would be more suitable for a discharge point than the location "H" since the coal seam is 3 feet lower and has been removed. | | J | Core Boring | The Middle Kittanning coal was found intact The mine in the Lower Kittanning coal seam was caved with some subsidence occurring above the mine. Medium amounts of grout would be required for sealing. Seven feet of limestone(considered Vanport) was found 45 feet below the mine floor. | | K | Core Boring | Mine void found in Lower Kittanning seam The mine roof was found to be solid. A mine water stand pipe was installed. | | L | Core Boring | The Lower Kittanning coal seam was found to be intact and solid. Weathered shale immediately above the coal would accept minor amounts of grout. | | М | Core Boring | A mine void was found in the Lower Kittanning coal seam. The roof was solid and would be suitable for sealing. Medium amounts of grout would be required after the first five feet of roof | | N | Core Boring | The Lower Kittanning Coal Seam was found to be intact but quite pervious. Immediately above and below the seam the strata was impervious. | | N-1 | Core Boring | A mine void was found in the Lower Kittanning coal seam, indicating that the mine entrance shown on the map had been drilled through. The roof was found to be solid and impervious
making it suitable for sealing. | | N-2 | Core Boring | The Lower Kittanning coal seam was found intact but very pervious thereby requiring large amounts of grout if seepage is to be curtailed. The strata above is solid. | | Drill Hole No | <u>.</u> <u>T</u> | 'ype | Comments | |---------------|-------------------|--------|---| | N-3 | Core B | oring | The Lower Kittanning coal seam was encountered. Medium amounts of grout would be required to seal the seam but the roof was found to be impervious for approximately six feet above the coal seam. | | N-4 | Core B | oring | The Lower Kittanning coal seam was encountered. No pressure testing was performed. | | N-5 | Core B | oring. | A mine void was found at this location indicating that the mine opening shown on the map had been located. The roof was solid and impervious making it suitable for sealing. Medium amounts of grout would be required to seal strata laying five feet above the mine roof. | | 0 | Core B | oring | The Lower Kittanning coal seam was encountered and found to be impervious. The strata above the mine was also found to be relatively impermeable during pressure testing. | | 0-1 | Core B | oring | 22 feet of Lower Kittanning coal was found in this drill hole. The strata below, in and above the coal was found to be quite pervious which accounts for the numerous seeps along the coal outcrop line. Limestone was found to be 52 feet thick 54feet under the coal. | | Р | Rotary | | A void was encountered as expected in the mine opening at the Lower Kittanning coal seam horizon. This point would be suitable for a discharge structure. | | Q | Core Bo | oring | A barrier was hit in the Lower Kittanning coal seam. No pressure testing was conducted. | | R | Core B | oring | The Lower Kittanning coal seam was encountered and found to be porous enough to require medium amounts of grout for complete sealing. | | R-1 | Core Bo | oring | The Lower Kittanning Coal seam located in this hole was quite impervious. Three feet of Limestone was found 50 feet below the coal. | | R-2 | Core Bo | oring | The Lower Kittanning coal seam encountered was porous indicating medium amounts of grout would be required. | | Drill H | ole No. Type | Comments | |---------|--------------|---| | R-3 | Core Boring | A mine void was hit at the Lower Kittanning coal seam. Pressure testing indicated that a heavy grout with additives would be needed to form an impervious roof if sealed at this point. | | Т | Rotary | The Middle Kittanning coal seam was found in tact and a void was hit as anticipated at the Lower Kittanning coal seam elevations. The roof was intact. A monitor well was installed. | | V | Rotary | Only 14 feet of spoil was encountered after which undisturbed overburden was found which meant that the Lower Kittanning coal seam was not removed by surface mining at this location. | | W | Rotary | Undisturbed overburden was found under 16 feet of spoil at this point. Forty nine feet lower a mine void was found in Lower Kittanning coal horizon. Surface mining would have been in the Middle Kittanning at this location. | | Х | Rotary | Forty feet of overburden was found above a three foot seam of fire clay commonly found under the Lower Kittanning coal. It was therefore concluded that the Lower Kittanning coal seam had been removed by surface mining. | | Υ | Rotary | Only nine feet of spoil was found here before undisturbed shale was encountered. Fifty eight feet above the clay found in Hole X. This indicated that the Middle Kittanning seam had been removed by surface mining operations. | | Z | Rotary | Eighteen feet of spoil was found before undisturbed earth was encountered. This indicates that the Lower Kittanning coal had been removed in its entirety along the crop line. | | AA | Rotary | Only thirteen feet of spoil was found before undisturbed overburden was encountered. The elevation indicates that the mine map was correct in showing the rise of the Lower Kittanning coal seam. | | Drill Hole No. | Type | Comments | |----------------|-------------|---| | FF | Rotary | A mine void was encountered at an elevation of 1718. This would place the mining activities in the Middle Kittanning seam or the Enos Hays Mine. A monitor well was installed. | | FF-1 | Rotary | This hole was drilled over two hundred feet west of FF in an effort to miss the Enos Hayes Mine. However the Middle Kittanning seam had been removed at this location indicating that the mine map utilized in planning did not depict the extent of this mining operation. Due to the consistency found in the elevation difference between the Lower Kittanning and the Middle Kittanning seam the drilling was not continued into the Lower Kittanning seam. | | ММ | Core Boring | A mine void was hit at the Lower Kittanning
Coal seam elevation. The roof was found to
be solid and impervious which would be
satisfactory for sealing. | | NN | Core Boring | The Lower Kittanning coal seam was encountered and found to be impervious as was the strata directly above. The underlying strata was less dense and would require grout for sealing. | | NN-1 | Core Boring | The Lower Kittanning coal seam was found in tact. Pressure tests indicated that the strata was very dense and would not require grout if sealed and flooded. | | PP | Core Boring | The bottom of a void in the Cartwright Mine was found at an elevation of 1711.58 approximately 52 feet below a 22 foot seam of un-mined Middle Kittanning coal. These elevations verified previous field work and mapping. | | QQ | Core Boring | A mine void was encountered in the Lower Kittanning coal seam verifying the mine map data in this area. | | Drill Hole No. | <u>Type</u> | Comments | |----------------|-------------|---| | EE | Core Boring | The first coal seam encountered at an elevation of 1713.42 was considered as the Middle Kittanning seam which placed the Lower Kittanning at 1666.42. Both seams were intact which placed the hole outside the periphery of this mine. The Lower Kittanning coal elevation compare favorably with mine map contours. | | II | Core Boring | A mine void was encountered in the Lower Kittanning coal seam with a bottom elevation of 1616 which places it approximately 20 feet lower than mine map contours. The Middle Kittanning seam was intact at an elevation of 1666 which is approximately ten feet lower than the mine map contours at this location. A 7.1 foot seam of Freeport Limestone was found at 1737. | | JJ | Rotary | The Lower Kittanning coal seam was encountered at an elevation of 1599 which placed the Middle Kittanning at 1653. The Middle Kittanning is agreement with the report map but the Lower Kittanning varies by 60 feet. Although recorded differently in the field we believe the strate from 1720 to 1727 is Freeport Limestone. | | KK | Rotary | A mine void was encountered in the Middle Kittanning coal seam at an elevation of 1686. This indicates that the Middle Kittanning drawing in the report is fairly accurate. We interpret the 12 foot seam found from 1747 to 1759 as including Freeport Limestone. | | LL | | The mine void encountered at this location was in the Lower Kittanning seam. The Middle Kittanning seam was intact. The Lower Kittanning lies at 1620.17 which agrees Fully with the mine map contours. The Middle Kittanning was found to be 10 feet lower than shown on the drawing. | DEPARTMENT OF ENVIRONMENTAL RESOURCES PROJECT SL 132-5-101.5 EXPLORATION BORE HOLES A,B,C,D,E,E-I LITTLE TOBY CREEK ELK COUNTY SUBSURFACE EXPLO SCALE UPPER SECTION ELEVATIONS SPLIT HOLES FOR VERTICAL SCALE $\overline{\omega}$ VERTICAL SCALE EXPLORATION BORE HOLES N,N-2,N-5,N-4,0 CHTTLE TOBY CREEK ELK COUNTY SUBSURFACE EXPLO SL 132-5-101.5 PROJECT DEPARTMENT OF ENVIRONMENTAL RESOURCES 1700 1690 MED. HARD DARK GRAY WEATHERED SHALE MED HARD DARK GRAY WEATHERED B FRACTURED SHALE JGRAY SHALEY CLAY MED. HARD DARK GRAY WEATHERED SHALE SOFT DARK GRAY WEATHERED SHALE - SURFACE ELEV. 1760.32 SHALEY 56 GRAY CLAY GRAY 00 CORE 0.19 40 GWL 20, 0.0 47 min BROWN SHALEY CLAY - SURFACE ELEV. 1740.62 SOFT DARK GRAY WEATHERED SHALE L.K. CLAY COAL 35 **N-4** CORE GWL 12 ROLLER BIT NO SAMPLE O GRAY SHALEY CLAY 50 SOFT GRAY WEATHERED SHALE 0.54 40 GWL20.5 0.00 255 0 SHALE 35 45 65 65 65 MED HARD GRAY WEATHERED MINE VOID L.K. MED. HARD DARK GRAY SHALE FINE GRAIN SANDSTONE min - SURFACE ELEV. 1742.14 **N-5** CORE SHALEY CLAY GRAY SHALE SOFT LIGHT MED. HARD DARK GRAY WEATHERED SHALE SOFT GRAY CLAY SHALE , CLAY COAL GRAT SHALET - SURFACE ELEV. 1758.59 SURFACE ELEV 1758 70 SHALEY CLAY N-2 CORE 30 20 0 31.7 1770 9 50 PLATE 10 VERTICAL SCALE EXPLORATION SUBSURFACE BORE' HOLES Q,R,R-I,R-2,R-3 **○** SUBSURFACE EXPLORATION BORE HOLES X, Y, AA, Z LITTLE
TOBY CREEK ELK COUNTY VERTICAL SCALE PROJECT SL 132-5-101.5 DEPARTMENT OF ENVIRONMENTAL RESOURCES <u></u>6 40 30 20 27' 34 - 12. - 12. - 12. 103.1 ков 9 2 ည 9 5 20 TIJ98 20 8 HOFES 80 96 006 9 SECTION 30 9 20 30 0 81 20 EXPLORATION CT SL 132 - 5 - 101.5 LITLE TOBY CREEK ELK COUNTY DEPARTMENT OF ENVIRONMENTAL RESOURCES BORE HOLES QQ, FF-1, FF SUBSURFACE