

V. APPENDIX

A. Sampling Program Results

1. Regular Test Stations

On the following pages in tabular form are the results of sampling data gathered throughout the course of the project at points selected for evaluation. Flows were measured at these stations by use of a 90° triangular V notch sharp crested weir inserted in a vitrified clay pipe or by use of Gurley current meter. Samples taken were sent to the Department of Environmental Resource's approved laboratory for testing.

Under the column entitled "Other" the results of special analysis have been shown to indicate the quantity of the following chemical substances:

Chemical Substance	Symbol
Ferrous Iron	Fe₂
Aluminum	Al
Calcium	Ca

APPENDIX

SAMPLING PROGRAM RESULTS

Other PPM			
Alkalinity PPM 1b/day		0000000	
Sulfates PPM lb/day	31494 12415 25504 10997 13369 41144 150,943 47732 60164 29176 26119 43964	41085 8.0 4.0 3.1 1.6 3.4 9.3 43.8 3.2 28.3	11.6
Su1 PPM	446 490 570 600 620 424 250 380 330 475	454 360 390 570 200 425 345 325 350	352
Total Iron PPM 1b/day	5.0 342 18.0 456 14.0 626 13.0 238 17.0 366 23.2 225 25.7 15517 11.2 1407 10.9 2113 9.5 835 13.6 747 7.1 892	14.1 1981 3.0 0.1 24.0 3.0 18 0.1 1.8 0.1 8.4 0.1 12.5 0.3 3.4 .5 54.5 .9 17.6 1.4	15.9 0.7
ity 1b/day	10269 3800 8502 4032 4528 2135 26566 17585 15526 8310 7698	10000 1 1 1 1 1 3 13	33
Acidity PPM 1b	150 150 190 220 220 220 44 140 88 88	144 68 110 150 120 160 100 80 42	103
рН	8.8.8.8.8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	3.3
Flow	5702 2110 3726 1526 1796 808 50288 10461 16164 7363 4579	9582 2 1 5 6 2 11.2 11.3	2.2
Date	6-1-73 6-27-73 7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-23-74	Average 7-12-73 8-2-73 9-7-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-23-74	Average
Test Point No.	Point on Little Toby Creek	Cartwright Mine to Little Toby Creek	

. APPENDIX

SAMPLING PROGRAM RESULTS

Other PPM	A1-14			
Alkalinity PPM lb/day	000000000		00000000	
ates 1b/day	8140 1436 2243 3414 981 1033 3019 6599 2249 5172 1712 4032	3336	58 65 27 24 35 30 155 33 88 88	55
Sulfates PPM 1b/	1000 720 1300 1300 1300 1198 200 1020 745 900 1025 850	964	1200 1500 1700 1799 723 1100 725 825 850	1162
Total Iron PPM 1b/day	0.4 3.0 1.55 3.0 1.2 2.0 1.4 2.0 2.2 2.0 0.89 0.8 1.2 18.1 0.74 4.8 0.29 0.9 .59 1.0 .44 2.1	2.0 3.5 13th edition.	10 5 60 6 90 3 60 3 60 3 60 3 60 60 60 60 60 60 60 60 60 60 60 60 60	7 7
	0 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2. meth.; 13	110 150 200 200 190 83 62 137 109 196	167
lity 1b/day	1221 239 414 374 143 175 422 893 301 1057 340 579	615 std. me	35 40 16 12 45 32 91 25 1	32
Acidity PPM 1b	150 120 240 210 190 204 28 138 100 184 204	157 129 s	720 930 980 900 940 1180 700 540 560 620	807
Н	4.1 3.7 4.1 4.0 4.0 4.0 4.0	4.0 by AA method	2.5 2.5 2.7 2.7 2.6 3.1	2.6
Flow GPM	663 166 143 148 148 62 71 71 1257 538 251 479 139 395	ge 359 determined l	4.0 3.6 1.1 1.1 10.8 3.8 3.8	4.3
Date	5-31-73 6-26-73 7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-28-73 12-28-73 1-26-74 2-16-74 3-23-74	Avera : Al	7-12-73 8-2-73 9-7-73 10-10-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-23-74	Average
Test Point No.	Unnamed Stream to Sawmill Run	Note	Cavazzi Mine to Sawmill Run	

V. APPENDIX

A. SAMPLING PROGRAM RESULTS

Other PPM			
Alkalinity PPM 1b/day	0 0 0 2 7 2 40 4 48 0 0	2.2 31	000000000
Sulfates PPM 1b/day	5 7 29 17 7 4 149 562 250 5027 45 539 12 452.8 6 1514 150 996.2 40 552	69 831	590 350 780 210 610 99 660 71 650 53 649 24 349 85 355 246 310 217 575 619 350 226
Total Iron PPM 1b/day	0.2 0.3 0.5 0.3 0.6 0.4 0.15 0.6 1.05 21.0 0.58 7.0 0 0 .15 3.7 .29 1.93 0 0	0.3 3.5	11 7 36 10 27 4 24 3 20 2 18 1 9.71 2 31.85 22 9.44 6.6 13.6 19.6 9.78 6.3
Acidity PPM 1b/day	6 8 8 5 4 2 4 15 8 161 ° 8 96 60 2264 6 151 8 53 4 55	12 281	280 166 260 70 320 52 580 63 340 27 280 68 100 69 104 73 280 301 142 92
ЬН	5.7 5.6 5.9 4.6 4.1 4.2 4.8 5.3	5.0	3.0 3.1 3.2 2.9 3.0 3.0 .13 2.8 3.6
Flow	116 47 49 3.4 1674 996 3143 2101 553 1149	1014	49 22 13 9 6 57 57 58 90 54
Date	7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-23-74	Average	6-1-73 6-26-73 7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-28-73 1-26-74 2-16-74 3-23-74
Test Point No.	77 Llimwa2 no inic nu		ω Dagus Mine Old Mine Opening to Sawmill Run

APPENDIX

SAMPLING PROGRAM RESULTS A.

Other PPM 1b/day			Fe2-0.5 1									Fe2-0.7 1		41-15	7			٠							
Alkalinity PPM 1b/day	0	0	- O			0		0	0	0	0	[4	0	· C	0	0	0	0	12 17	0	0	0	0	0	
Sulfates PPM 1b/day			1100 2076			825 667		850 1375	900 3882	825 1334		929 2504	1100 4448		1000 377	610 247	550 139	473 69	226 329	495 133	700 868	425 619	325 226	450 2693	580 913
Total Iron PPM 1b/day									38 164			24 68	4.1 16	-	5.1 2		3.9 1	3.0 0.4	9.45 13	3.2 0.8	35.88 45	9.71 14	11.5 8	9.8 59	8.85 14
Acidity PPM 1b/day	390 3532						318 463				350 2359	357 1005		150 202				142 21					140 97		178 257
рН	3.0		•	•			•					3.0						3.5							3.5
Flow te GPM	5-31-73 754				~	~	~	-28-73	26-74	16-74		Average 228	5-31-73 336	~~				33	<u>س</u>	က	ξŲ.			3–74	Average 122
Test Point No. Date						ү ә). Le) 4	- ' - λqα	To 2-	ال و	Toby		9	7-	-8 -8	2	ąəə) J) ,	γpλ	οŢ	ə ⁻	17-E	ρŢ

Note Al determined by AA method 129 standard method 13th edition

SAMPLING PROGRAM RESULTS Ą

Other PPM														٠.													e erior de execución de deservoltados de execución de exe	
Alkalinity PPM 1b/day	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	alle de des des de la company : application de des des des des des des des des des	
Sulfates PPM 1b/day	4593	927	339	461	287	584	991	1527	4226	2243	1223	1837		1603	3411	714	259	367	508	599	914	069	1364	2096	1000	3157		1257
Sulf PPM	009	430	370	450	410	424	175	295	210	200	275	175		334	280	250	370	400	410	397	226	320	220	240	225	305		304
Total Iron PPM 1b/day		4.8 10	6.3 6	5.2 5	60.0 4	4.7 6	7.3 42	4.9 25	3.0 61	4.5 50 .	6.2 27.6	3.1 24.6		9.3 23						2.5 4							A THE PARTY OF THE	1.81 6
Acidity PPM 1b/day					150 105				46 926		60 266			88 348			58 41			84 109				12 105				55 186
Hd	1 .		3.6			3.3	•	•	3.9		•	•	1	3.6						3.7		•	•			٠ د		3.8
Flow GPM	637	179	9/	85	58	107	471	431	1676	934	370	099		473	1014	237	58	9/	103	125	336	179	516	727	377	862		384
Date	1		7-13-73						~~	1-26-74	2-16-74	3-23-74		Average	5-31-73	6-26-73	7-13-73	8-2-73	9-7-73	10-19-73	11-25-73	12-13-73	12-28-73	1-26-74	2-16-74	3-23-74		Average
Test Point No.	67	K	ЭЭ	zე	λ	qo	T	ЭŢ	33	ΓŢ	u	o qu	ijo,	H	89													Unnam Litt

APPENDIX

SAMPLING PROGRAM RESULTS

Other		* And the state of	8.0	
최정			A1-8.0	
Alkalinity PPM 1b/dav	0 0 0 0 0 0 0 0 2 17 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 73	0000000000	
Sulfates PPM 1b/dav	6825 1483 906 829 1132 1687 24259 3882	5240 6499 5469	4406 5772 3694 1571 1571 1421 10941 5466 4800 6943 6226 2681	4620
Sul	120 86 160 290 200 200 198 150 60	200 95	1670 830 890 940 970 799 224 650 530 550 425	750
Total Iron PPM 1b/dav	11 4 6 1 1 2 291 0	37	13 9 2 2 2 488 17 17 118 65 31	64
Tota]	0.2	2 2	1.0 1.9 1.1 1.1 1.1 1.1 1.1 1.1 2.1 2.1 2.6 8.9 4.9	3.5
Acidity PPM 1b/day	5 853 4 414 2 124 2 149 0 226 0 0 170 8 1293 8 518		723 681 540 184 171 166 757 562 1666 679 568	969
AIM	15 12 22 22 40 40 20 8 8	14 14 21	110 98 130 110 110 92 34 90 62 126 60 90	93
на	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3.99	3.9
Flow	4736 1436 471 237 471 709 13470 5388	2182 5698 3631	547 579 345 139 130 148 4067 700 754 1101 943 503	830
Date	6-4-73 6-27-73 7-13-73 8-2-73 9-7-73 10-19-73 11-25-73	2-16-74 3-23-74 Average	5-31-73 6-26-73 7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74 3-28-74	Average
Test Point No.	ek Gun to Little 73	Sawmill Toby Cre	Asmed Stream to Little by Creek	

Note Al determined by AA method 129 standard method 13th edition

APPENDIX

. SAMPLING PROGRAM RESULTS

Other PPM		$\frac{A1-100}{Ca-110}$	
Alkalinity PPM 1b/day	0000000000	0000000000	
Sulfates PPM 1b/day	420 21125 430 6027 480 12136 550 4595 580 7848 776 12383 150 16602 410 10609 395 32368 275 15774 300 23402	422 13855 370 6742 480 854 460 1042 450 776 570 1474 602 10612 225 4852 345 1432 245 3487 225 3585 225 3585	373 3434 th edition od 13th edition
Total Iron PPM 1b/day	6.8 342 19.0 266 14.0 354 14.0 117 17.0 230 21.8 348 10.9 1206 13.6 351 24.7 2027 11.2 642 19.4 219 11.1 867	15.3 580 0.9 16 2.2 4 2.2 5 0.3 1 2.3 41 2.3 41 31.1 670 3.7 15 1.8 26 2.0 32 4.9 295 2.2 18	4.6 94 3 standard method 13th 203A standard method
Acidity PPM 1b/day	180 9053 170 2382 200 5057 210 1754 220 2976 28 447 72 7969 150 3881 160 13111 144 8260 180 2037 128 9985	153 5576 78 1421 100 178 150 340 130 210 130 336 114 2009 88 1897 114 473 5.0 712 50 798 88 5313 48 404	91 1174 4 AA method 129 stand AA EPA method 203A
ЬН		3.2 4.4 3.7 4.2 4.2 4.4 4.1 8.1	1 4.1 determined by A
Flow GPM	4189 1167 2105 695 1126 1329 9217 2155 6824 4777 1194	3439 1517 148 188 143 215 215 1796 1796 17329 5029 700	1171 Al det Ca det
Date	5-31-73 6-27-73 7-12-73 8-2-73 9-7-73 10-19-73 11-25-73 12-14-73 12-28-73 1-26-74 2-16-74	Average 3 5-31-73 1 6-26-73 1 7-12-73 1 8-2-73 1 9-7-73 1 10-19-73 1 11-25-73 1 12-28-73 1 12-28-73 1 1-26-74 5 3-23-74 5	Average Note:
Test Point No.	er Run to Little Toby Creek	ne Run to Little Ky.	

APPENDIX

SAMPLING PROGRAM RESULTS

Other																												
Alkalinity PPM 1b/dav	0	>	o c	> C	o c	>	2 6		6 25			0	er en	6 7	<u> </u>	o c	> c	o c	> c	>	4 2	C	o c	o	o c	0		5 4
Sulfates PPM 1b/dav	266	160	65	81	87	161	528	287	656	289	460	4241		593	801	786	408	330	501	339	112	460	348	742	825	249		524
Sul	170	370	240	250	250	271	175	205	160	140	225	115		214	270	270	270	340	300	314	226	275	215	235	225	200		261
1 Iron 1b/day	0.3	0.2	0.1	0.2	0.5	5.0	5.4	8.7	0	. 9.	•	0		1.8	13	52	20	16	40	. 33		41	30	16	37	16		27
Total PPM 1	0.2	0.3	0.5	0.7	1.3	7.6	1.8	6.2	0	۳.	.7	0		1.6	4.4	18.0	13.0	16.0	24.0	30.6	23.0	24.7	18.3		10.3			16.0
Acidity PPM 1b/day	.]								65					19				43										99
AC	12	14	20	20	7	12	80	32	12	16	10	9		14	∞	26	30	77	26	77	88	74	77	10	7	74		39
Hd	4.7	•	•	•	•	•		•	4.7		•	•		4.7	5.5	5.5	5.6	5.3	6.4	5.3	4.6	3.5	4.1	5.3	4.2	5.1		6.4
Flow GPM	130	35	22	26	29	67	251	116	341	172	170	3071		367	246	242	125	80										172
Date	5-31-73	6-26-73		8-2-73	9-7-73	<u>`</u>	11-25-73	<u></u>	7	1-26-74	-16-7	-23-7	- Anna de la competica de la c	Average	31-7	(7	13-7	8-2-73	9-7-73	10-19-73	11-25-73	12-13-73	12-28-73	1-26-74	2-16-74	3-23-74	majo megalini alje, s vija, salaj ilimajo delik salam sa est	Average
Test Point No.	77								ə Jəu						78				0:	1 7								naed Itil

APPENDIX

SAMPLING PROGRAM RESULTS Α.

Other PPM	Ca-110			
Alkalinity PPM 1b/day	00000000		000000	
Sulfates PPM lb/day	60 65 45 21 15 30 23 81 41.5 66	45 edition	16 32 19 7 49 36 29 33	
Sulf PPM	560 550 490 323 276 285 200 325 350 350		600 600 451 455 255 225 340 404	
Total Iron PPM 1b/day	39 4.2 33 3.9 28 3.0 17.8 1.0 4.2 0.2 19.4 2.1 2.3 0.2 5.4 1.0 17.3 2.0 12.0 2.0	17.8 2.0 371 standard method 13th	5.2 0.1 5.4 0.3 26.1 1.1 2.8 .01 1.2 0.2 3.4 .5 2.2 .6 5.9 0.4	
Acidity PPM 1b/day	220 24 220 26 190 17 180 12 232 13 210 33 80 9 166 41 140 16 254 48	189 24 AA EPA method 203A s [.]	130 3.5 140 7.5 124 5.4 122 1.9 44 8.5 54 8.7 80 21.4	
Hq		10 determined by AA EP	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	
Flow GPM	9 7 7 5 4 9 9 10 16		2 4 3 1 16 34 22 22 23	
Date	7-13-73 8-2-73 9-7-73 10-19-73 11-25-73 12-13-73 12-28-73 1-26-74 2-16-74 3-23-74	Average Note: Ca	8-24-73 9-7-73 10-9-73 12-13-73 12-28-73 1-26-74 2-16-74	
Test Point No.	α agus Mine Air Seal to ittle Toby Creek		∞ Kyler Mine Caved Mine Headi o Little Toby Creek	

. APPENDIX

A. SAMPLING PROGRAM RESULTS

<u>1b/</u> day		v.	102 147	+	52		315	91	261	330	163												!		
Other PPM	A1-19	Ca-y		· .	- 6.7	•	14.	ν, i		15.	- 11.8		A1-95	A1 - 130											
Alkalinity PPM 1b/day	00		0 Fe2- 0 Fe2-		0 Fe2-		0 Fe ₂ -				Fe2-	0	0	0	0	0	0	0	0	0	0	0	0		
Sulfates PPM 1b/day	9531 4949	4528	3018	3112	2931	5693	9704	4448	4596	6833	5376	453					151						45	552	edition 13th edition
Sulf PPM	520 450	500	560	451	375	009	450	275	275	325	877	1200	1300	1500	1000	1700	1398	916	1050	1065	009	900	009	1105	
Total Iron PPM 1b/day	257 407	263	156 285	180	206	232	759	376	518	578	351	9.0	0.4	0.2	0.3	0.3	0.1	0.5		4.3	9.5	.7	9.5	•	standard method 13th 203A standard method
Total	14.0	29.0	29.0	26.1	26.4	24.5	35.2	22.7	31.0	27.5	28.0	1.5	2.2	2.6	2.5	2.5	0.9	•	1.36	2.01	12.6	•	12.6	3.3	ndard A stan
ity 1b/day	4399 1980	2083	1347.	179	1563	3321	5175	3429	4010	5046	2912	219	97	20	98	96	82	24	654	1169	993	33	257	336	method 129 stand EPA method 203A
Acidity PPM 1b	240 180	230	250	26	200	350	240	212	240	240	224	580	009	230	730	710	760	32	920	542	542	526	340	542	AA meth AA EPA
Hď	3.0	•	3.6		•	•		•	•		3.1				•	•	3.6	•	3.5	3.4	•	•	3.9	•	determined by A
Flow GPM	1526 915	754	449	574	651	790	1796	1347	1391	1751	1054	31	13	7	10	11	10	62	59	179	153	53	63	54	Al det Ca det
Date	6-1-73 6-26-73	7-13-73	8-2-73	٦ 1	11-25-73	1	12-28-73	1-26-74	2 - 16 - 74	3-23-74	Average	6-1-73	6-26-73	7-13-73	8-2-73	9-7-73	10-19-73	11-25-73	12-9-73	12-28-73	1-26-74	2-16-74	3-23-74	Average	Note:
Test Point No.	93	C	t t	₹uŗ	ьв	эн				кујет Кујет		94			₹	սոչ								-	nnU x38

SAMPLING PROGRAM RESULTS Α.

	p/day		,	;										i			•	7 0	۰ (بر	 1				23	11	28		T	
Other	1 1	!	Fe ₂ -0.5	1									and the second s	Fe ₂ -0.5		-	1	re2-0.5	Fe ₂ -2.7	e2-1.0	1			- 1.5	2 4 5	Fe, 5.6	2.5	Fe ₂ -3.3	
Alkalinity PPM 1h/day	120	61			77	17	24	256	562) (0		4 09	c	.						> 0				Fe		Fe	
AIK	20	30	300	78	52	5,0	77	80	9 6	72	!		-	43										,					
Sulfates PPM 1b/dav	203	109	129	12	9.7	7.3	121	304	582	629	8.1	505		218	6268	6678	1879	967	800	376	1267	1132	7777	4205	1820	5294		2851	
Sul	78	, r.	57	38	36	34	225	95	120	100	125	80		83	380	590	720	750	410	370	226	225	325	150	175	200		325	
Total Iron PPM 1b/day	3 5) m		0	0	0		-	3 24			40		0.01							·			0 364				104	
		-	~	7. T	1.(4		6.5	4.9	4.2	1	6.4		3.0	5.4	8,0	× ×	0.9	4.6	4.3	2.0	14.	9.1	13.0	13.	10.		8.3	
Acidity PPM 1b/day					•				58					0.09	249									2803	104			803	
Acf		٠				2.0	∞	10	12	32	9	12		11	120	98	120	110	76	84	34	82	80	100	10	84		83	
Hď	١.	6.7							4.8					6.2	•		•	•						3.2				3.4	
Flow GPM	498	170	188	27	22	18	45	566	404	524	5	524		224	1373	473	372	89	103	89	995	418	1915	2335	867	2205		893	
Date	6-1-73	6-27-73	7-13-73	8-2-73	9-7-73	10-19-73	11-25-73	12-9-73	12-28-73	-26-7		-23-7		Average	6-1-73	6-26-73	7-13-73	8-2-73	9-7-73	10-19-73	11-25-73	12-9-73	12-28-73	1-26-74	_7	3-23-74		Average	
Test Point No.	97		рə	шe								ечш Бүч			66							0	3	am	ıce			Иппат Кудег	

V. APPENDIX

. SAMPLING PROGRAM RESULTS

Other	+ + + A																											
Alkalinity PPM 1h/day	0	0	0	0	. 0	0	0	0		0	0	0	Andrews of the control of the contro		0	0	0	0	0	0	0	0	0	0	0	0		
Sulfates PPM 1b/dav	420 28076					426 4272				225 23208				368 18568	190				320 14					-			 194 112	
Total Iron	3.2 214		9.5 232		10.0 151	9.4 94	36.7			9.0 928	12.9	7.6 456	ikeris ele iliginado de la calenda de la	11.2 471	0.4	1.1 0.2	1.0 0.1	6.0	0.8 .03					.146 .28	.741.90	.444 2.0	0.78 .39	
Acidity PPM 1b/day	120 8022				210 3170				25462		905	6159		130 6799	24				7 96						20 24		 42 13	
На	3.3	3.4	3.4	3.1	3.2	3,3	3.5	3.3	3.4	3.4	3.2	3.6		3.4	4.1				3.6								 4.3	
Flow Date GPM	1					10-19-73 835				1-26-74 8591			open of the country of the contraction of the country of the count	Average 4614	6-4-73	6-27-73 13			9-7-73 3						2-16-74 101		Average 64	
Test Point No.							ĸ	.əu	مدا	co	s,	176r 15 0			103						-				un	Я -	Yer	

APPENDIX

A. SAMPLING PROGRAM RESULTS

1b/day			87	39	42	10	14	06	20	12	77	7		32		28	1153	1638	1279	369	699	1025		267	650	820	
Other PPM 1	!	-	e-18.0			e2- 6.7		e2-19.0	_	'e?- 5.6	'e,- 5.6	Fe ₂ - 1.1		Fe ₂ -13.0			$Fe_{2}-91.0$						i		Fe ₂ - 26.9	Fe ₂ - 50.0	
Alkalinity PPM lb/day	0	0						0					en anderson and and and and and and and and and an	124			0									 1	
Sulfates PPM 1b/day		2277	1294	728	785	507	313	1858	461	841	2540	849		1114	31654		12289								2	14517	
Sul	470	480	480	500	520	348	200	390	225	390	325	325		388	840	840	970	1000	597	850	1020	925	45	400	450	722	
l Iron 1b/day		171	102	47	63	77	95	120	54	21	111	14		72	3316	2093	1393	2131	1793	1485	721	1323	6	759	629	1426	
Total PPM	4.2	36.0	38.0	32.0	42.0	30.0	29.4	25.3	26.1	9.7	14.3	7.1	***************************************	24.5	. 88	9/	110	130	66	78.5	48.3	85.1	· 3	40.5	27.3	71.2	
Acidity PPM 1b/day	00		110 297					.34 639			·	32 64		97 237	0 8290		0 4054						8 239			8 4652	
PF	1(Π	Π	12	16	77	7	=	-	9	v			O1	22	23	320	38	42	ľΩ	040	20	8	17	206	238	
рн	•	•	•	•	•		•	3.1	•			•		3.5	•		2.9		•	•	•	•	•	•	•	3,5	
Flow GPM							130	396	170	180	651	166		243	3138	2294	1055	1364	1508	1575	1243	1293	2492	1563	2012	1776	
Date	6-4-73	6-27-71	7-12-73	8-2-73	9-7-73	10-19-73	5-7	12-13-73	3-7	7	-7	3-23-74		Average	6-23-73	-	8-2-73	9-7-73	7-6	-25	12-14-73	-28-	-26-7		3-23-84	Average	
Test Point No.	104	тę	.	FT.	Į C			ree Mir							107				un	Я	λs	Нз	0	ב	əuţW	қλјец	

V. APPENDIX

. SAMPLING PROGRAM RESULTS

11. / 1	Aeb/at	,	- H	4		-		12	∞	2	4	4												And the best of the second sec	
Other PPM	A1-24	La-108 Fe,-0.5	Fe7-8.4	Fe,-0.8	7 - 7	Fen-6.7	7	Fe,-6.7	_	Fe2-4.5		Fe2-4.3												Angelen er	
Alkalinity PPM 1h/day	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	24 11	18 2.3	0	0	0	0	21 6.6	
tes 1b/day	559	73	61	36	13	95	2377	733	776	145	899	503	lon edition	33	53	17	35	83	27	80	168	72	773	134	
Sulfates PPM 1b/c	610	680	750	830	798	650	700	425	450	400	400	609	editi 13th	310	380	320	326	176	215	275	195	225	305	273	
Iron 1b/dav	64	Ŋ	4	က		5	104	11	58	14	47	33	od 13th I method	8.0	1.2	1.4	1.2	1.5	.9.	1.1	7.	1.2	8.3	1.9	
Total Iron PPM 1b/day	50	77	50	09	95	36.7	30.7	44.7	33.4	38	28	42.0	standard method 13th 203A standard method	8.0	0.6	26.0	11	3.2	4.3	3.77	77.	3.9	3.3	7.3	
ty 1b/day		41	32	18,	6	65	2037	518	562	123	471	379		12	11	4	100	20	6.4	11.6	28	30	61	20	
Acidity PPM 1b	340	380	400	420	260	340	009	300	326	340	282	390	method 129 EPA method	9/	80	82	100	77	50	40	32	94	24	62	
Нф	3.0		•				2.8					2.9	by AA by AA	3.7	3.3	3.4	3.2	5.7	5.4	3.4	5.5	3.7	5.1	4.2	
Flow	76	6	9	æ	 1	12	282	143	144	30	139	77	determined determined	6	11	7	6	39	10	24	72	27	211	42	
Date	6-26-73	7-13-73	8-2-73	9-7-73	10-19-73	-25-7	12-13-73	-28-7	1 - 26 - 74	-16-	3-23-74	Average	Note: Al	7-12-73	8-2-73	9-7-73	10-19-73	11-25-73	12-13-73	12-28-73	1-26-74	2-9	3-23-74	Average	
Test Point No.	112 ng	ibe	зән								Dag			113 5	8	uŢ	aq	əн						ags ail o	

V. APPENDIX

A. SAMPLING PROGRAM RESULTS

												•									
Other																					
Alkalinity PPM 1b/dav	0	0	0	0	0	0	0	0	0	0		0	00	0	0	0	0	0			
Sulfates PPM 1b/dav	41	en	7	16	2669	100.9	383	737	1364	2838	816	13585	5005	25197	68236	23462	20836	17731	24864		
Suli	380	120	380	274	225	260	205	285	225	450	280	900	349	410	310	200	250	275	342		
Total Iron PPM 1b/dav	0.4	0.1	0.1	0.2	29.6	0.5	1.4	2.0		0.9	4.0	521	545	958	2906	1243	1066	558	1114		
Total	3.7	4.1	5.7	3.4	2.5	1.4	.7	9.	1.5	6.	2.5	23.0	38.0	15.6	13.2	10.6	12.8	8.7	17.4		
ity 1b/dav	11	e		9	999	23	41	57	424	719	195	5434	3155	8604	26853	14312	11501	6190	10864		
Acidity PPM 1b	100	110	120	102	99	09	22	22	70	114	78	240	220	140	122	122	138	96	154		
Hd	3.6	3.2	•	•				•	•	4.1	3.8	3.1	3.1	3.1	3.4	3.2	3.2	3.7	3.3		
Flow	6	2		5	286	32	155	215	505	525	244	1885	1194	5118	18332	9770	6941	5370	7769		
Date	7-12-73	8-2-73	9-7-73	10-19-73	11-25-73	12-13-73	12-28-73	1-26-74	2-16-74	3-23-74	Average	9-7-73	10-19-73	12-14-73	12-28-73	1-26-74	2-16-74	3-23-74	Average		
Test Point No.	121 %	[4]	:ws	; u	шОЗ						isnnil Rogos	130	. MoŢ	Вe	Ą	∍ ə:	τЭ	Λqο	r əlt wolt		

2. <u>Special Test Stations</u>

In addition to the regular test stations, investigations were made at numerous other points to more accurately pinpoint problem areas and to clarify questions that had arisen from past results. A summary of these results are enumerated hereunder:

- (a) From this form of testing it was learned that the flows on the western side of the Cartwright Mine were acidic in some locations and alkaline in others.
- (b) Sample results from points #62, an outlet to a surface mine pond, and #131 a point up stream from discharge of pond, indicated that after the

Test <u>Point</u>	Date	Flow GPM	рН	Acidi PPM	ty <u>#/Day</u>	Total PPM	Iron #/day	Sulf PPM	ates 1b/day	Alkal PPM	inity 1b/Day _	Other
3	8-22-73	1	2.7	220	1.2	28	0.2	310	1.7			
14	8-22-73	1	7.0			6	0.1	160	1.7	110	1.2	
15	8-22-73	1	2.5	7.30	7.8	110	1.2	830	8.9			
16	8-22-73	2	2.8	220	4.7	73	1.5	520	11.2			
17	8-22-73	11	6.8			4	0.6	470	63.3	170	22.9	
143	8-22-73	27	7.7			5	1.4	540	174.7	150	48.5	

ponding and liming, the water quality was poorer than the stream coming directly through the stripping spoil. These points are on the head waters of Little Toby Creek due east of Coal Hollow.

62 8-22-73 31 3.7 79 29.8 9 3.4 430 162.3 131 8-21-73 34 3.5 51 20.6 2 0.6 130 52.6	Test <u>Point</u>	Date	Flow GPM		lity #/Day			linity <u>lb/day</u>	

(c) Water being emitted from air seals along the old road from Toby to Coal Hollow varied considerably in quality in that two points, (79, 80) were found to be alkaline and have tolerable sulfate quantities while the other seals were emitting acid water with wide ranges of sulfates. Iron contents were fairly constant.

Test Point	Date	Flow GPM	pН	Acid PPM	lity 1b/day	Tota PPM	l Iron #/day	Sulf PPM	ates <u>lb/da</u> y		linity lb/day	Other
65	3-23-74	135	4.9	46	74	59	97.0	225	364			
79	8-24-73		6.5			2.8		290		10		
80	8-24-73	6	7.5			5.1	0.4	24	1.7	73	5.1	
80	9-7-73	1	7.8			0.1		29	0.3	84	0.9.	
84	8-24-73	1	2.9	270	2.9	7.1	0.1	520	5.6			
84	9-7-73		3.0	240		7.2		500				
84	10-19-73	1	3.0	264	0.1	8.6	0.0	524	0.1			

(d) Water from the Ticossi Mine in the Middle Kittanning Coal is alkaline, the same as water from the Eureka #2 Mine (#97). The sulfate and iron content however is higher at Ticossi.

Test Point	Date									linity 1b/day	
122	8-22-73	4	7.6	 	3.1	0.2	150	8.1	120	6.5	

(e) The dilution of the mine water surfacing at point #113 in the Limestone Run area by an alkaline spring with acceptable iron and sulfate quantities located downstream is effective in improving water quality.

Test Point	Date	Flow GPM			ity 1b/day				ates 1b/day		linity 1b/day	Other
132	8-21-73	11	6.6			0.6	0.1	2.0	7.9	2.2	3.0	
133	8-21-73	13	6.0	15	2.4	0.9	0.1	170	275			
113	8-2-73	11	3.3	80	11	9.0	1.2	380	53			
113	9-7-73	4	3.4	82	4	26.0	1.4	320	17			

(f) Water delivered to a home from the Dagus Mine Water Supply, located near reference point 90 was analyzed and found to have a pH of 6.1 and acid content of 4 ppm. A water sample taken from a gas station receiving water from the Kyler Run Reservoir was also analyzed and found to be a higher quality water as alka linity was tested at 2 ppm, iron at 0.5 ppm and sulfates at 5 ppm. The pH was 6.7. Sample numbers were 134 and 135.

(g) Sampling of Hays Run at reference point 139 above the Kyler Mine water course at point #107 indicates that the mine is the source of pollution on this stream.

Test		Flow	Acidity	Tota	1 Iron	Sulf.	ates	Alka	linity	Other
Point	Date	GPM pH	PPM 1b/day	PPM	#/day	PPM	1b/day	PPM	1b/day	
139	8-22-73	6.4		1.9	0.9	62	30.1			

- (h) The effect of seepage through old mine refuse located on the western bank of Little Toby Creek was determined by analyzing water from pools located above and below a refuse pile located on Little Toby Creek. The water in the lower pool coming from seepage through the refuse. In this case the pH went from 3.4 to 2.6 while the acidity went from 92 to 360 ppm. Iron content rose from 4 to 72 while sulfate went from 380 to 590. See analysis results for points 141 and 142 on page 35.
- (i) Results of water analysis from other points are tabulated hereunder.

Test Point	Date	Flow GPM	рН	Acid:	ity 1b/day		l Iron #/day		ates 1b/day	Alka PPM	linity lb/day Location
90	8-22-73	22	3.0	160	43.1	17	4.6	490	132.1		Air Seal- Dagus Mine
106	8-22-73	. 1	2.4	640	6.9	110	1.2	660	7.1		Air Seal- Kyler Mine
111	8-24-73		6.7			1.5		19		10	Spring Disgs.
125	8-22-73		6.7			0.8		14		9	Pond discharge
								,			Daguscahonda Run
136	8-24-73	6	2.8	310	21.7	36	2.5	820	57.5		Caved Drift- Toby Mine
138	8-24-73		5.9	6		1.5		31			Spring Disgs.
140	8-24-73		3.0	150		8.0		400			Pond
144	8-24-73	22	3.4	78	302.7	3.9	15.1	360	1397.3		Little Toby Cr.
149	2-16-74		5.7	82	1708	10.3	214	225	4686		Kyler Run
150	2-16-74	1795	3.6	64	1380	4.2	89	275	5930		Little Toby Cr.
151	2-16-74	13	6.0	10	2	0.9	0.1	300	48		Swamp Disgs.
98	10-19-73		3.0	200		26.1		524			Unnamed Stream
											to Kyler Run
98	2-16-74		3.0	140		27.2		425			Pond along
											Unnamed Stream
49	9-7-73		6.8	10	0.5	1.1	0.05	680	33		Spring Disgs.
117	9-7-73	4	3.0	1100	47	20	0.9	2100	91		Discharge from
											Surface Mine

B. Subsurface Exploration Program

1. SL 132-5 Project Area

In order to properly evaluate proposed reclamation measures and ascertain the validity of the mine map information utilized for the preparation of this plan a subsurface exploration program was under taken. The results of this program are included herein. The tabulation on pages 62 through 73 briefly describes the findings at each hole and summarizes the results of the drilling and pressure testing within the project area. The drill lugs have been plotted and are also presented herein. There locations are found on Plate 19.

An investigation and determination of property owners was made during the subsurface exploration program. Information obtained was presented to DER in reproducible form at that time.

2. SL 132-1 Project Area

In order to obtain more data to assist in the evaluation of information provided to DER in the Toby Creek SL 132-1 Report five test holes here drilled in the Brandy Camp Creek to Hays Run Area. Of these five, three were cored and two drilled with an air rotary rig.

From the information; provided by drilling these five holes, we have concluded that the Lower Kittanning seam has been mined out as shown, but there are major variances in the contours. There was no evidence of mining in the Middle Kittanning seam except in drill hole KK which means holes II, JJ and LL all hit pillars of coal remaining in the mined out area or mining in this seam was not as extensive as shown. The elevations of this seam found by drilling conformed with those shown on Drawing A4. Drill hole EE hit a barrier as anticipated. The Freeport Limestone depicted on Drawing A5 does exist throughout this area as shown. A brief analysis of these holes is found on page 74.

The drill hole locations are found on Plate 6, while logs are found on Plates 16 and 17.

The following tabulation and drill hole logs summarizes the results of the drilling and pressure testing conducted within the project area.

Drill Hole	No. <u>Type</u>	Comments
A	Core Boring	Lower Kittanning coal barrier was found in tact. Minimal amounts of grout would be required above and below the coal seam; however, the seam itself was found to be quite permeable.
В	Core Boring	Mine void was encountered in Lower Kittanning coal seam. This was considered to be the heading shown on the mine map. Apparently the outflow of water was restricted since the 24 hour reading indicated that the water level was above the roof of the mine. Grout requirements 28 feet above the void are minimal.
С	Core Boring	Lower Kittanning coal barrier was found intact. Heavy grouting required below, in and above coal seam.
D	Core Boring	Lower Kittanning Coal barrier was encountered. Grouting considered unnecessary. 24 hour water level was above coal seam.
E	Core Boring	Lower Kittanning coal seam was found intact Heavy grouting could be required below, in and 8 feet above coal seam.
E-1	Core Boring	Mine void found in Lower Kittanning seam assumed to be mine opening shows on mine map. Mine roof was found to be very solid thereby eliminating the need for grouting.
F	Core Boring	Lower Kittanning coal barrier was found intact Heavy grouting could be required above and below the coal seam. The coal seam itself and the strata immediately above it was found to be impervious.
G	Rotary	The Lower Kittanning coal seam was found signifying that a stump in the mine had been encountered. A monitor well was installed.

Drill Hole No.	<u>Type</u>	Comments
Н	Rotary	The Lower Kittanning coal seam was encountered and found in tact. This site would be suitable for discharge.
I	Rotary	A mine void in the Lower Kittanning coal seam was found. This site would be more suitable for a discharge point than the location "H" since the coal seam is 3 feet lower and has been removed.
J	Core Boring	The Middle Kittanning coal was found intact The mine in the Lower Kittanning coal seam was caved with some subsidence occurring above the mine. Medium amounts of grout would be required for sealing. Seven feet of limestone(considered Vanport) was found 45 feet below the mine floor.
K	Core Boring	Mine void found in Lower Kittanning seam The mine roof was found to be solid. A mine water stand pipe was installed.
L	Core Boring	The Lower Kittanning coal seam was found to be intact and solid. Weathered shale immediately above the coal would accept minor amounts of grout.
М	Core Boring	A mine void was found in the Lower Kittanning coal seam. The roof was solid and would be suitable for sealing. Medium amounts of grout would be required after the first five feet of roof
N	Core Boring	The Lower Kittanning Coal Seam was found to be intact but quite pervious. Immediately above and below the seam the strata was impervious.
N-1	Core Boring	A mine void was found in the Lower Kittanning coal seam, indicating that the mine entrance shown on the map had been drilled through. The roof was found to be solid and impervious making it suitable for sealing.
N-2	Core Boring	The Lower Kittanning coal seam was found intact but very pervious thereby requiring large amounts of grout if seepage is to be curtailed. The strata above is solid.

Drill Hole No	<u>.</u> <u>T</u>	'ype	Comments
N-3	Core B	oring	The Lower Kittanning coal seam was encountered. Medium amounts of grout would be required to seal the seam but the roof was found to be impervious for approximately six feet above the coal seam.
N-4	Core B	oring	The Lower Kittanning coal seam was encountered. No pressure testing was performed.
N-5	Core B	oring.	A mine void was found at this location indicating that the mine opening shown on the map had been located. The roof was solid and impervious making it suitable for sealing. Medium amounts of grout would be required to seal strata laying five feet above the mine roof.
0	Core B	oring	The Lower Kittanning coal seam was encountered and found to be impervious. The strata above the mine was also found to be relatively impermeable during pressure testing.
0-1	Core B	oring	22 feet of Lower Kittanning coal was found in this drill hole. The strata below, in and above the coal was found to be quite pervious which accounts for the numerous seeps along the coal outcrop line. Limestone was found to be 52 feet thick 54feet under the coal.
Р	Rotary		A void was encountered as expected in the mine opening at the Lower Kittanning coal seam horizon. This point would be suitable for a discharge structure.
Q	Core Bo	oring	A barrier was hit in the Lower Kittanning coal seam. No pressure testing was conducted.
R	Core B	oring	The Lower Kittanning coal seam was encountered and found to be porous enough to require medium amounts of grout for complete sealing.
R-1	Core Bo	oring	The Lower Kittanning Coal seam located in this hole was quite impervious. Three feet of Limestone was found 50 feet below the coal.
R-2	Core Bo	oring	The Lower Kittanning coal seam encountered was porous indicating medium amounts of grout would be required.

Drill H	ole No. Type	Comments
R-3	Core Boring	A mine void was hit at the Lower Kittanning coal seam. Pressure testing indicated that a heavy grout with additives would be needed to form an impervious roof if sealed at this point.
Т	Rotary	The Middle Kittanning coal seam was found in tact and a void was hit as anticipated at the Lower Kittanning coal seam elevations. The roof was intact. A monitor well was installed.
V	Rotary	Only 14 feet of spoil was encountered after which undisturbed overburden was found which meant that the Lower Kittanning coal seam was not removed by surface mining at this location.
W	Rotary	Undisturbed overburden was found under 16 feet of spoil at this point. Forty nine feet lower a mine void was found in Lower Kittanning coal horizon. Surface mining would have been in the Middle Kittanning at this location.
Х	Rotary	Forty feet of overburden was found above a three foot seam of fire clay commonly found under the Lower Kittanning coal. It was therefore concluded that the Lower Kittanning coal seam had been removed by surface mining.
Υ	Rotary	Only nine feet of spoil was found here before undisturbed shale was encountered. Fifty eight feet above the clay found in Hole X. This indicated that the Middle Kittanning seam had been removed by surface mining operations.
Z	Rotary	Eighteen feet of spoil was found before undisturbed earth was encountered. This indicates that the Lower Kittanning coal had been removed in its entirety along the crop line.
AA	Rotary	Only thirteen feet of spoil was found before undisturbed overburden was encountered. The elevation indicates that the mine map was correct in showing the rise of the Lower Kittanning coal seam.

Drill Hole No.	Type	Comments
FF	Rotary	A mine void was encountered at an elevation of 1718. This would place the mining activities in the Middle Kittanning seam or the Enos Hays Mine. A monitor well was installed.
FF-1	Rotary	This hole was drilled over two hundred feet west of FF in an effort to miss the Enos Hayes Mine. However the Middle Kittanning seam had been removed at this location indicating that the mine map utilized in planning did not depict the extent of this mining operation. Due to the consistency found in the elevation difference between the Lower Kittanning and the Middle Kittanning seam the drilling was not continued into the Lower Kittanning seam.
ММ	Core Boring	A mine void was hit at the Lower Kittanning Coal seam elevation. The roof was found to be solid and impervious which would be satisfactory for sealing.
NN	Core Boring	The Lower Kittanning coal seam was encountered and found to be impervious as was the strata directly above. The underlying strata was less dense and would require grout for sealing.
NN-1	Core Boring	The Lower Kittanning coal seam was found in tact. Pressure tests indicated that the strata was very dense and would not require grout if sealed and flooded.
PP	Core Boring	The bottom of a void in the Cartwright Mine was found at an elevation of 1711.58 approximately 52 feet below a 22 foot seam of un-mined Middle Kittanning coal. These elevations verified previous field work and mapping.
QQ	Core Boring	A mine void was encountered in the Lower Kittanning coal seam verifying the mine map data in this area.

Drill Hole No.	<u>Type</u>	Comments
EE	Core Boring	The first coal seam encountered at an elevation of 1713.42 was considered as the Middle Kittanning seam which placed the Lower Kittanning at 1666.42. Both seams were intact which placed the hole outside the periphery of this mine. The Lower Kittanning coal elevation compare favorably with mine map contours.
II	Core Boring	A mine void was encountered in the Lower Kittanning coal seam with a bottom elevation of 1616 which places it approximately 20 feet lower than mine map contours. The Middle Kittanning seam was intact at an elevation of 1666 which is approximately ten feet lower than the mine map contours at this location. A 7.1 foot seam of Freeport Limestone was found at 1737.
JJ	Rotary	The Lower Kittanning coal seam was encountered at an elevation of 1599 which placed the Middle Kittanning at 1653. The Middle Kittanning is agreement with the report map but the Lower Kittanning varies by 60 feet. Although recorded differently in the field we believe the strate from 1720 to 1727 is Freeport Limestone.
KK	Rotary	A mine void was encountered in the Middle Kittanning coal seam at an elevation of 1686. This indicates that the Middle Kittanning drawing in the report is fairly accurate. We interpret the 12 foot seam found from 1747 to 1759 as including Freeport Limestone.
LL		The mine void encountered at this location was in the Lower Kittanning seam. The Middle Kittanning seam was intact. The Lower Kittanning lies at 1620.17 which agrees Fully with the mine map contours. The Middle Kittanning was found to be 10 feet lower than shown on the drawing.

DEPARTMENT OF ENVIRONMENTAL RESOURCES

PROJECT SL 132-5-101.5

EXPLORATION BORE HOLES A,B,C,D,E,E-I LITTLE TOBY CREEK ELK COUNTY
SUBSURFACE EXPLO

SCALE

UPPER SECTION ELEVATIONS

SPLIT HOLES

FOR

VERTICAL SCALE

 $\overline{\omega}$

VERTICAL SCALE

EXPLORATION BORE HOLES N,N-2,N-5,N-4,0 CHTTLE TOBY CREEK
ELK COUNTY
SUBSURFACE EXPLO

SL 132-5-101.5

PROJECT

DEPARTMENT OF ENVIRONMENTAL RESOURCES

1700

1690

MED. HARD DARK GRAY WEATHERED SHALE MED HARD DARK GRAY WEATHERED
B FRACTURED SHALE
JGRAY SHALEY CLAY
MED. HARD DARK GRAY WEATHERED SHALE
SOFT DARK GRAY WEATHERED SHALE - SURFACE ELEV. 1760.32 SHALEY 56 GRAY CLAY GRAY 00 CORE 0.19 40 GWL 20, 0.0 47 min BROWN SHALEY CLAY - SURFACE ELEV. 1740.62 SOFT DARK GRAY WEATHERED SHALE L.K. CLAY COAL 35 **N-4** CORE

GWL 12

ROLLER BIT NO SAMPLE

O GRAY SHALEY CLAY

50
SOFT GRAY WEATHERED SHALE

0.54 40 GWL20.5 0.00

255 0 SHALE 35 45 65 65 65 MED HARD

GRAY WEATHERED

MINE VOID L.K.

MED. HARD DARK GRAY SHALE

FINE GRAIN SANDSTONE

min

- SURFACE ELEV. 1742.14

N-5 CORE

SHALEY CLAY

GRAY SHALE

SOFT LIGHT

MED. HARD DARK GRAY WEATHERED SHALE

SOFT GRAY CLAY SHALE

, CLAY COAL

GRAT SHALET

- SURFACE ELEV. 1758.59

SURFACE ELEV 1758 70

SHALEY CLAY

N-2 CORE

30

20

0

31.7

1770

9

50

PLATE 10

VERTICAL SCALE

EXPLORATION

SUBSURFACE

BORE' HOLES Q,R,R-I,R-2,R-3

○

SUBSURFACE EXPLORATION BORE HOLES X, Y, AA, Z LITTLE TOBY CREEK ELK COUNTY VERTICAL SCALE

PROJECT SL 132-5-101.5 DEPARTMENT OF ENVIRONMENTAL RESOURCES

<u></u>6

40

30

20

27' 34

- 12. - 12. - 12.

103.1

ков

9

2

ည

9

5

20

TIJ98

20

8

HOFES

80

96

006

9

SECTION

30

9

20

30

0 81

20

EXPLORATION CT SL 132 - 5 - 101.5
LITLE TOBY CREEK
ELK COUNTY DEPARTMENT OF ENVIRONMENTAL RESOURCES BORE HOLES QQ, FF-1, FF SUBSURFACE

